Kategorija

Iknedēļas Ziņas

1 Kamīni
Apkures sistēma ar dabisko cirkulāciju: kopējas ūdens ķēdes
2 Sūkņi
Kā pieslēgt apkures katlu?
3 Kamīni
Vai 2-stāvu daudzdzīvokļu ēkā ir izdevīgi izvietot māju siltuma skaitītāju?
4 Sūkņi
3 veidus, kā iegūt elektrību no zemes, dariet to pats
Galvenais / Degviela

Kalkulators radiatoru sekciju aprēķināšanai


Neatkarīgi no tā, kā jūs izolēt māju vai dzīvokli, vienkārši nav iespējams to darīt bez apkures. Šim nolūkam bieži tiek izmantota ūdens sildīšana - tā ir ērta, efektīva un izturīga. Izmantojot mūsu kalkulatoru, mēs piedāvājam aprēķināt nepieciešamo radiatora sekciju skaitu tikai pāris minūtēs un izlemt, kurš risinājums vislabāk atbilst jūsu nosacījumiem.

Tas jāņem vērā, uzstādot sildītājus.

Izmantotā kalkulatora vērtība ir orientējoša. Turklāt jums jāņem vērā, ka praksē tiek apstiprināti ne vienmēr ražotāja raksturojumi. Tas nozīmē, ka labāk ir uzstādīt 10% vairāk sadaļu, noapaļojot līdz veselai daļai. Ja jūs saskaras ar to, ka ziemā telpā būs pārāk karsts, tad uzstādiet uz radiatora vārsta, kas regulē cirkulējošā dzesēšanas šķidruma daudzumu. Tas arī palīdzēs ietaupīt laiku, ja jums būs jāaizstāj viena no sadaļām.

Attālumi ir skaidri jāsaglabā noteiktajos robežās:

  • Loku sekcijas platumam kolekcijā vajadzētu būt vismaz 70%. Tas nozīmē, ka labāk ir uzstādīt vairāk sekciju ar mazāku siltuma jaudu.
  • Attālumam no ierīces augšdaļas līdz palodzes vietai jābūt 100-120 mm. Pretējā gadījumā siltuma plūsmas prognozēšana būs daudz sarežģītāka.
  • Lai neuzsildītu ielu, radiatoriem jābūt vismaz 50 mm attālumā no sienas.
  • Starp grīdas plakni un sildītāja apakšējo punktu jāsaglabā 100 mm attālums.

Mēs ceram, ka šis materiāls būs noderīgs, veicot remontdarbus vai uzstādot jaunu ūdens sildīšanas sistēmu.

kalkulatora kalkulators:
radiatora sekciju skaits telpu apkurei

Aprēķinot nepieciešamo siltuma daudzumu, apsildāmās telpas platību aprēķina, pamatojoties uz vajadzīgā patēriņa aprēķinu 100 vati uz kvadrātmetru. Turklāt tiek ņemti vērā vairāki faktori, kas ietekmē telpas kopējo siltuma zudumu, un katrs no šiem faktoriem veicina kopējo aprēķina rezultātu.

Šī aprēķina metode ietver gandrīz visas nianses un balstās uz formulu, kas ļauj samērā precīzi noteikt vajadzību pēc telpas ar siltumenerģiju. Atliek dalīt rezultātu, kas iegūts no alumīnija, tērauda vai bimetāla radiatora vienas siltuma pārneses vērtības un ap to iegūto rezultātu.

Kā aprēķināt radiatoru skaitu privātmājai

Ērie dzīves apstākļi ziemā ir pilnībā atkarīgi no siltumapgādes atbilstības telpām. Ja tā ir jauna ēka, piemēram, vasarnīcā vai personīgajā apbūvē, tad ir jāzina, kā aprēķināt sildīšanas radiatorus privātmājai.

Kā aprēķināt siltuma radiatorus privātmājai

Visas darbības tiek samazinātas līdz radikatoru sekciju skaita aprēķināšanai, un tām ir skaidrs algoritms, tādēļ nav nepieciešams kvalificēts speciālists - katra persona varēs veikt diezgan precīzu siltumtehnisko aprēķinu par savu māju.

Kāpēc ir nepieciešams precīzs aprēķins?

Siltuma padeves ierīces ir atkarīgas no ražošanas materiāla un atsevišķu sekciju platības. Ne tikai siltums mājā ir atkarīgs no pareiziem aprēķiniem, bet arī sistēmas līdzsvaru un efektivitāti kopumā: nepietiekams uzstādītā radiatora sekciju skaits nenodrošinās pietiekamu siltumu telpā un pārāk daudz sekciju nokļūs kabatā.

Sildīšanas radiatoru veidi

Aprēėinos ir jānosaka akumulatora tips un apkures sistēma. Piemēram, alumīnija radiatoru aprēķins privātmājas apsildei atšķiras no citiem sistēmas elementiem. Radiatori ir čuguna, tērauda, ​​alumīnija, anodēta alumīnija un bimetāla:

  • Visizcilākie baterijas ir dzelzs, tā sauktais "akordeons". Tie ir izturīgi, izturīgi pret koroziju, barošanas daļa ir 160 W augstumā 50 cm un ūdens temperatūra 70 grādi. Šo ierīču ievērojams trūkums ir neizskatīgs izskats, bet mūsdienu ražotāji ražo gludas un diezgan estētiskas čuguna baterijas, vienlaikus saglabājot visas materiāla priekšrocības un padarot tās konkurētspējīgas.

Čuguna radiatori

  • Alumīnija radiatori pārsniedz čuguna izstrādājumus ar siltumenerģiju, tie ir izturīgi, tiem ir viegls svars, kas dod priekšrocības uzstādīšanas laikā. Vienīgais trūkums ir uzņēmība pret skābekļa koroziju. Lai to novērstu, tika pieņemta anodēta alumīnija radiatoru ražošana.

Alumīnija apsildes radiatori

  • Tērauda ierīcēm nav pietiekamas siltuma jaudas, tās nevar demontēt un nepieciešamības gadījumā palielināt sekcijas, tās ir uzņēmīgas pret koroziju, tādēļ tās nav populāras.
  • Bimetāla apkures radiatori ir tērauda un alumīnija detaļu kombinācija. Siltuma nesēji un stiprinājumi tajās ir tērauda caurules un vītņoti savienojumi, pārklāti ar alumīnija korpusu. Trūkums ir diezgan augstas izmaksas.

Atkarībā no apkures sistēmas veida ir sildelementu viencaurules un divu cauruļu savienojumi. Daudzstāvu dzīvojamās ēkās galvenokārt tika izmantota vienas caurules apkures sistēmas shēma. Šajā gadījumā trūkums ir diezgan būtiska atšķirība ienākošā un izplūstošā ūdens temperatūrā dažādos sistēmas galos, kas norāda uz siltumenerģijas nevienmērīgu sadalījumu instrumentos.

Viencaurules un divu cauruļu apkures sistēma

Lai vienmērīgi sadalītu siltumenerģiju privātmājās, jūs varat izmantot divu cauruļu apkures sistēmu, ja caur vienu cauruli tiek piegādāts karstā ūdens daudzums, un caur otru tiek izvadīts dzesēts ūdens.

Turklāt precīzu aprēķinu skaita radiatoriem privātmājā atkarīgs instrumentu elektrisko shēmu, griestu augstums, kvadrātveida logu ailēm, skaits ārsienu, no istabas tipa, iekštelpu iekārtas dekoratīvie paneļi, un citiem faktoriem.

Atceries Ir nepieciešams pareizi aprēķināt vajadzīgo radiatoru daudzumu privātmājā, lai garantētu pietiekamu siltuma daudzumu telpā un nodrošinātu finanšu ietaupījumus.

Tabula akumulatoru sekciju skaita aprēķināšanai

Siltuma aprēķinu veidi privātmājai

Privātmājas apkures radiatoru aprēķina veids ir atkarīgs no mērķa, tas ir, cik precīzi vēlaties aprēķināt privātmājas radiatorus. Ir vienkāršotas un precīzas metodes, kā arī aprēķinātās telpas platība un apjoms.

Saskaņā ar vienkāršoto vai provizorisko metodi aprēķinus samazina, reizinot telpu platību ar 100 W: standarta vērtība ar pietiekamu siltuma enerģiju uz metru kvadrātā, bet aprēķina formula būs šāda:

Q ir nepieciešamā siltuma jauda;

S ir telpas aptuvenā platība;

Sakaižamo radiatoru daļu vajadzīgo skaitu aprēķina pēc formulas:

N - nepieciešamais sekciju skaits;

Qx - jaudas blīvuma sadaļa produkta pasē.

Tā kā šīs telpas augstuma formulas ir 2,7 m, citām vērtībām ir vajadzīgi korekcijas koeficienti. Aprēķini tiek samazināti, nosakot siltuma daudzumu uz 1 m3 telpas tilpuma. Vienkāršotā formula izskatās šādi:

H - telpas augstums no grīdas līdz griestiem;

Qy ir vidējā siltuma jauda atkarībā no žogu veida, ķieģeļu sienām - 34 W / m3, paneļu sienām - 41 W / m3.

Šīs formulas nevar garantēt komfortablus apstākļus. Tāpēc ir nepieciešami precīzi aprēķini, ņemot vērā visas ēkas saistītās iezīmes.

Precīzs sildīšanas ierīču aprēķins

Visprecīzākā formāla nepieciešamā siltuma izlaide ir šāda:

Q = S * 100 * (K1 * K2 *... * Kn-1 * Kn), kur

K1, K2... Kn ir koeficienti atkarībā no dažādiem apstākļiem.

Kādi apstākļi ietekmē iekštelpu klimatu? Precīzai aprēķināšanai ņem vērā ne vairāk kā 10 rādītājus.

K1 - indikators, kas ir atkarīgs no ārējo sienu skaita, jo vairāk virsma saskaras ar ārējo vidi, jo lielāka ir siltumenerģijas zudums:

  • ar vienu ārsienu indikators ir vienāds ar vienu;
  • ja divas ārējās sienas - 1,2;
  • ja trīs ārējās sienas - 1,3;
  • ja visas četras sienas ir ārpuse (t.i., vienas istabas ēka) - 1.4.

K2 - ņem vērā ēkas orientāciju: tiek uzskatīts, ka telpas labi izgaismo, ja tās atrodas dienvidu un rietumu virzienā, šeit K2 = 1,0 un otrādi - nepietiek - kad logi saskaras ar ziemeļiem vai austrumiem - K2 = 1,1. Ar to var apgalvot: austrumu virzienā telpa joprojām sasilst no rīta, tāpēc ir lietderīgāk piemērot koeficientu 1,05.

Mēs aprēķinām, cik daudz akumulatora vajadzētu sildīt

K3 - ārējo sienu izolācijas indikators, atkarīgs no materiāla un siltumizolācijas pakāpes:

  • divu ķieģeļu ārējām sienām, kā arī, neizmantojot siltumizolāciju, indikators ir vienāds ar vienu;
  • nepārklātajām sienām - K3 = 1,27;
  • mājokļa izolācijā, pamatojoties uz siltumtehnisko aprēķinu pēc SNiP - K3 = 0,85.

К4 - koeficients, ņemot vērā zemāko gada aukstā gada temperatūru noteiktā reģionā:

  • līdz 35 ° C K4 = 1,5;
  • no 25 ° С līdz 35 ° С К4 = 1,3;
  • līdz 20 ° С К4 = 1,1;
  • līdz 15 ° С К4 = 0,9;
  • līdz 10 ° C K4 = 0,7.

Sildīšanas radiatoru aprēķins pa platībām

K5 - atkarīgs no telpas augstuma no grīdas līdz griestiem. Standarta augstums ir h = 2,7 m, un nolasījums ir vienāds ar vienu. Ja telpas augstums atšķiras no standarta, tiek ieviests korekcijas koeficients:

  • 2,8-3,0 m - K5 = 1,05;
  • 3.1-3.5 m - K5 = 1,1;
  • 3.6-4.0 m - K5 = 1.15;
  • vairāk par 4 m - K5 = 1,2.

K6 - indikators, kas ņem vērā telpas virsmas raksturu. Dzīvojamo māju grīdas vienmēr ir izolētas, augšpusē esošās istabas var tikt sasildītas vai aukstākas, un tas neizbēgami ietekmēs aprēķinātās telpas mikroklimatu:

  • aukstajā mansardā, kā arī, ja iepriekšējā istaba nav apsildāma, indikators būs vienāds ar vienu;
  • pie apsildāma mansarda vai jumta - K6 = 0,9;
  • ja augšpusē ir apsildāma istaba - K6 = 0,8.

K7 - indikators, kas ņem vērā loga vienību tipu. Loga dizains būtiski ietekmē siltuma zudumus. Koeficienta K7 vērtība tiek noteikta šādi:

  • jo stikla koka logi nepietiekami aizsargā telpu, augstākais K7 = 1,27;
  • stikla pakešu stikliem piemīt izcilas aizsardzības īpašības pret siltuma zudumiem, vienkameras stikla pakete ar diviem stikliem K7 ir vienāda ar vienu;
  • uzlabots vienkameras dubultstiklās logs ar argona pildījumu vai dubultā stikla pakete, kas sastāv no trim stikliem K7 = 0,85.

Viencaurules un divu cauruļu apkures sistēma

K8 - koeficients atkarībā no logu atvērumu stiklojuma laukuma. Siltuma zudumi ir atkarīgi no instalēto logu skaita un platības. Logu zonas attiecība pret telpas platību ir jāpielāgo tā, lai koeficients būtu viszemākais. Atkarībā no loga zonas attiecības pret telpas platību nosaka vēlamais rādītājs:

  • mazāk par 0,1 - K8 = 0,8;
  • no 0,11 līdz 0,2 - K8 = 0,9;
  • no 0,21 līdz 0,3 - K8 = 1,0;
  • no 0,31 līdz 0,4 - K8 = 1,1;
  • no 0,41 līdz 0,5 - K8 = 1,2.

Elektroinstalācijas shēmas sildierīcēm

K9 - ņem vērā ierīču elektroinstalāciju. Atkarībā no karstā un aukstā ūdens kontaktligzdas pievienošanas metode ir atkarīga no siltuma. Šis faktors jāņem vērā, uzstādot un nosakot nepieciešamo siltumapgādes ierīču laukumu. Ņemot vērā savienojuma shēmu:

  • ar caurulēm pa diagonāli, no augšas tiek piegādāts karstais ūdens, no akumulatora otrā puse atgriežas no apakšas, un skaitlis ir vienāds ar vienu;
  • ar piegādes un atgriezes savienojumu no vienas puses un no vienas sadaļas augšdaļas un apakšas K9 = 1,03;
  • abās pusēs esošo cauruļvadu savienojums nozīmē gan piegādi, gan atgriešanos no apakšas, bet koeficients K9 = 1,13;
  • diagonāles pieslēguma opcija, kad plūsma ir no apakšas, atgriešanās no augšas ir K9 = 1,25;
  • vienvirziena savienojuma variants ar piegādi no apakšas, atgriešanās no augšas un vienvirziena apakšējā savienojums K9 = 1,28.

Siltuma zudumi radiatora ekrāna uzstādīšanas dēļ

K10 - koeficients atkarībā no ierīču dekorēšanas paneļu tuvuma pakāpes. Ierīču atvērtība brīvajai siltuma apmaiņai ar telpas telpu ir ļoti svarīga, jo mākslīgo barjeru izveide samazina bateriju siltuma pārnesi.

Esošie vai mākslīgi radītie barjeri var ievērojami samazināt akumulatora atsitienu siltuma apmaiņas ar telpu pasliktināšanos. Atkarībā no šiem nosacījumiem koeficients ir vienāds ar:

  • ar radiatora atvērtu izvietojumu uz sienas no visām pusēm 0.9;
  • ja ierīce ir pārklāta ierīces augšpusē;
  • kad radiatori ir pārklāti uz sienas augšpuses niša1.07;
  • ja ierīce ir pārklāta ar palodzi un dekoratīvo elementu 1.12;
  • kad radiatori ir pilnībā pārklāti ar dekoratīvu pārklājumu 1.2.

Noteikumi apkures radiatoru uzstādīšanai.

Turklāt ir īpaši noteikumi sildierīču atrašanās vietai, kas jāievēro. Tas nozīmē, ka akumulators ir ne mazāks kā:

  • 10 cm no palodzes apakšas;
  • 12 cm no grīdas;
  • 2 cm no ārsienas virsmas.

Nosakot visus nepieciešamos rādītājus, jūs varat iegūt diezgan precīzu nepieciešamās telpas siltuma jaudas vērtību. Dalot iegūtos rezultātus pases datus par siltuma pārnesi no vienas izvēlētās ierīces sadaļas un noapaļojot līdz tuvākajam veselajam skaitlim, mēs iegūstam vajadzīgo sadaļu skaitu. Tagad varat, nebaidoties no sekām, uzņemt un uzstādīt nepieciešamo aprīkojumu ar vēlamo termisko efektivitāti.

Uzstādot apkures akumulatoru mājā

Veidi, kā vienkāršot aprēķinus

Neskatoties uz šķietamo vienkāršību formulai, faktiski praktiskā aprēķināšana nav tik vienkārša, it īpaši, ja aprēķināto telpu skaits ir liels. Aprēķinu vienkāršošana palīdzēs izmantot īpašus kalkulatorus, kas ievietoti dažu ražotāju tīmekļa vietnēs. Ir pietiekami, lai ievadītu visus nepieciešamos datus attiecīgajos laukos, pēc kura jūs varat iegūt precīzu rezultātu. Jūs varat arī izmantot tabulas metodi, jo aprēķina algoritms ir diezgan vienkāršs un vienveidīgs.

Kā aprēķināt radiatoru sekciju skaitu

Radiatoru skaita aprēķināšanai ir vairākas metodes, taču to būtība ir vienāda: noskaidrojiet maksimālos telpas siltuma zudumus un pēc tam aprēķiniet nepieciešamo sildīšanas ierīču daudzumu, lai tos kompensētu.

Aprēķinu metodes ir atšķirīgas. Vienkāršākie sniedz aptuvenus rezultātus. Tomēr tos var izmantot, ja telpas ir standarta vai piemēro koeficientus, kas ļauj ņemt vērā katras konkrētās istabas esošos "nestandarta" nosacījumus (stūra istaba, izeja uz balkonu, logs uz visu sienu utt.). Ir daudz sarežģītāks aprēķins, izmantojot formulas. Bet būtībā tie ir vienādi koeficienti, kas tiek savākti tikai vienā formā.

Ir vēl viena metode. Tas nosaka faktisko zaudējumu. Īpaša ierīce - termiskais fokusētājs - nosaka reālos siltuma zudumus. Pamatojoties uz šiem datiem, viņi aprēķina, cik radiatoru ir vajadzīgi, lai tos kompensētu. Kas vēl ir labs par šo metodi, ir fakts, ka jūs varat redzēt tieši to, kur siltuma atstāj vissekmīgāko siltumtēlu attēlu. Tas var būt defekts darbā vai celtniecības materiālos, plaisa utt. Tajā pašā laikā jūs varat iztaisnot situāciju.

Radiatoru aprēķins ir atkarīgs no telpas siltuma zudumiem un sadaļas nominālā siltuma jaudas.

Sildīšanas radiatoru aprēķins pa platībām

Vieglākais veids. Aprēķiniet nepieciešamo siltuma daudzumu apkurei, pamatojoties uz telpas telpu, kurā tiks uzstādīti radiatori. Jūs zināt katras telpas platību, un siltuma nepieciešamību var noteikt ar SNiP ēku kodiem:

  • vidējai klimatiskajai joslai, kas paredzēta apkurei 1 m 2 no dzīvojamās telpas, nepieciešami 60-100 W;
  • platībām virs 60 o, ir nepieciešami 150-200W.

Pamatojoties uz šiem noteikumiem, jūs varat aprēķināt, cik daudz siltuma jūsu istaba būs nepieciešama. Ja dzīvoklis / māja atrodas vidējā klimatiskajā zonā, apkurei 16 m 2 platībā ir nepieciešama 1600 W siltuma (16 * 100 = 1600). Tā kā normas ir vidējas, un laika apstākļi neuztur pastāvību, mēs ticam, ka 100W ir vajadzīgs. Lai gan, ja jūs dzīvojat vidējā klimatiskajā joslā dienvidos un ziemas ir vieglas, skatiet 60W katra.

Sildīšanas radiatoru aprēķinus var veikt saskaņā ar SNiP normām

Enerģijas rezerves apkure ir nepieciešama, bet ne tik liela: ar vajadzīgās jaudas palielināšanu palielinās radiatoru skaits. Un jo vairāk radiatori, jo vairāk dzesēšanas sistēmas. Ja tiem, kas ir pieslēgti pie centrālās apkures, tas nav nekritisks, tad tiem, kam ir atsevišķa apkure vai plānošana, liels sistēmas apjoms nozīmē lielas (nevajadzīgas) izmaksas dzesēšanas šķidruma sildīšanai un lielāku sistēmas inerci (noteiktā temperatūra ir mazāk piesardzīga). Un rodas loģisks jautājums: "Kāpēc maksāt vairāk?"

Aprēķinot vajadzību pēc telpas siltuma, mēs varam uzzināt, cik daudz sadaļu ir nepieciešams. Katrs no sildītājiem var izstarot zināmu siltumu, kas norādīts pasē. Paņemiet nepieciešamo siltumu un sadaliet radiatoru jaudu. Rezultāts ir nepieciešamais sekciju skaits, lai kompensētu zaudējumus.

Aprēķiniet radiatora skaitu vienai un tai pašai telpai. Mēs noskaidrojām, ka nepieciešams 1600W. Ļaujiet jaudai vienu sadaļu 170W. Izrādās, 1600/170 = 9.411 gab. Jūs varat noorganizēt uz augšu vai uz leju pēc saviem ieskatiem. Jūs varat noapaļot uz mazāku, piemēram, virtuvē - ir pietiekami daudz papildu siltuma avotu, un lielāks ir labāks telpā ar balkonu, lielu logu vai stūra telpā.

Sistēma ir vienkārša, taču trūkumi ir acīmredzami: griestu augstums var būt atšķirīgs, netiek ņemts vērā sienu, logu, izolācijas materiāls un vairāki faktori. Tādējādi SNiP sildīšanas radiatoru sekciju skaits ir aptuvens. Precīziem rezultātiem nepieciešams veikt pielāgojumus.

Kā aprēķināt radiatora sekcijas pēc telpas tilpuma

Ar šo aprēķinu tiek ņemts vērā ne tikai platība, bet arī griestu augstums, jo jums ir nepieciešams sildīt visu telpā esošo gaisu. Tātad šī pieeja ir pamatota. Un šajā gadījumā tehnika ir līdzīga. Nosakiet telpas tilpumu, un pēc tam, ievērojot normas, noskaidrot, cik daudz siltuma nepieciešams, lai to sildītu:

  • paneļu mājā kubikmetru gaisa sildīšanai nepieciešams 41 W;
  • ķieģeļu mājā m 3 - 34 W.

Ir nepieciešams sildīt visu gaisa daudzumu telpā, jo ir daudz pareizāk skaitīt radiatorus pēc tilpuma

Mēs aprēķināsim visu par to pašu 16m 2 telpu un salīdzināsim rezultātus. Ļaujiet griestu augstums 2,7 m. Apjoms: 16 * 2.7 = 43.2m 3.

Tālāk mēs aprēķinām par iespējām panelī un ķieģeļu mājā:

  • Paneļu mājā. Nepieciešamais apkures siltums ir 43,2 m 3 * 41 V = 1771,2 W. Ja mēs ņemam visas tās pašas sekcijas ar 170W jaudu, mēs saņemam: 1771W / 170W = 10.418 gabali (11 gab.).
  • Ķieģeļu mājā. Siltumapgādei nepieciešams 43.2m 3 * 34W = 1468.8W. Mēs skaita radiatorus: 1468,8 W / 170 W = 8,64 gab. (9 gab.).

Kā redzat, atšķirība ir diezgan liela: 11 gabali un 9 gab. Turklāt, aprēķinot pa apgabaliem, tika iegūta vidējā vērtība (ja noapaļota tajā pašā virzienā) - 10 gab.

Rezultātu pielāgošana

Lai iegūtu precīzāku aprēķinu, ir jāņem vērā pēc iespējas vairāk faktoru, kas samazina vai palielina siltuma zudumus. Tieši no tā tiek izgatavotas sienas un cik labi tās ir izolētas, cik lieli ir logi, un kāda veida stiklojums ir uz tām, cik daudz sienas istabā noved pie ielas utt. Lai to izdarītu, ir koeficienti, pēc kuriem jums nepieciešams reizināt konstatētās siltuma zuduma vērtības telpā.

Radiatoru skaits ir atkarīgs no siltuma zuduma daudzuma

Windows veido siltuma zudumus no 15% līdz 35%. Konkrētais skaitlis ir atkarīgs no loga lieluma un no tā, cik labi tas ir izolēts. Tādēļ ir divi attiecīgie koeficienti:

  • loga platības attiecība pret grīdas platību:
    • 10% - 0,8
    • 20% - 0,9
    • 30% - 1,0
    • 40% - 1,1
    • 50% - 1,2
  • stiklojums:
    • trīs kameru stikla pakete vai argons dubultā stikla logā - 0,85
    • Parasts divkameru dubultstiklojums - 1,0
    • parasts dubultstikli - 1,27.

Sienas un jumts

Lai ņemtu vērā zaudējumus, svarīgi ir sienu materiāli, siltumizolācijas pakāpe, sienu skaits, kas vērstas uz ielu. Šeit ir šo faktoru faktori.

  • Ķieģeļu sienas ar biezumu no diviem ķieģeļiem tiek uzskatītas par normu - 1,0
  • nepietiekošs (nav) - 1,27
  • labi - 0,8

Ārējās sienas:

  • interjers - lossless, koeficients 1,0
  • viens - 1.1
  • divi - 1,2
  • trīs - 1.3

Siltuma zudumu daudzumu ietekmē sildīšana vai arī telpa nav uz augšu. Ja uz augšu (māju otrajā stāvā, citā dzīvoklī utt.) Ir apdzīvojams apsildāmā telpa, samazinājuma koeficients ir 0,7, ja apsildāmajā mansardā ir 0,9. Tiek uzskatīts, ka neapsildīts bēniņi neietekmē temperatūru un (koeficients 1,0).

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Ja aprēķins veikts uz apgabala, un griestu augstums ir nestandarta (par standartu ņem 2,7 m augstumu), tad tiek izmantots proporcionāls palielinājums / samazinājums, izmantojot koeficientu. To uzskata par vieglu. Šim nolūkam telpā esošo griestu reālais augstums ir sadalīts ar standarta 2,7 m. Iegūstiet vēlamo koeficientu.

Apsveriet, piemēram: ļaujiet griestu augstumu 3,0 m. Mēs iegūstam: 3,0 m / 2,7 m = 1,1. Tāpēc radiatora sekciju skaits, ko aprēķina pēc platības šai telpai, jāreizina ar 1.1.

Visas šīs normas un koeficienti tika noteikti dzīvokļiem. Lai ņemtu vērā siltuma zudumus mājās caur jumtu un pagrabstāvu / pamatni, jums jāpalielina rezultāts par 50%, ti, privātmājas koeficients ir 1,5.

Klimatiskie faktori

Varat veikt pielāgojumus atkarībā no vidējās temperatūras ziemā:

  • -10 о С un augstāk - 0,7
  • -15 о С - 0.9
  • -20 о С - 1.1
  • -25 о С - 1,3
  • -30 о С - 1,5

Ņemot visus nepieciešamos pielāgojumus, iegūstiet precīzāku radiatoru skaitu, kas nepieciešamas telpas apsildīšanai, ņemot vērā telpu parametrus. Taču ne visi kritēriji ietekmē siltuma starojuma spēku. Ir tehniskas detaļas, kuras tiks aplūkotas turpmāk.

Dažādu radiatoru tipu aprēķins

Ja jūs gatavojaties uzstādīt standarta izmēra šķērsgriezuma radiatorus (ar aksiālo attālumu 50 cm augstumā) un jau izvēlējušies nepieciešamo materiālu, modeli un izmēru, nebūtu grūti aprēķināt to skaitu. Lielākā daļa cienījamu uzņēmumu, kas piegādā labas apkures iekārtas, ir tehniski dati par visām izmaiņām, starp kurām ir arī siltuma jauda. Ja nav jaudas, bet ir norādīts dzesēšanas šķidruma plūsmas ātrums, tad pāreja uz elektroenerģiju ir vienkārša: dzesēšanas šķidruma caurplūdums ar 1 l / min ir aptuveni vienāds ar jaudu 1 kW (1000 W).

Radiatora aksiālo attālumu nosaka augstums starp atveres centriem dzesēšanas šķidruma pievadīšanai / izvadīšanai.

Lai daudzās vietnēs klientiem atvieglotu dzīvi, viņi instalē speciāli izstrādātu kalkulatoru programmu. Tad apkures radiatoru sekciju aprēķins tiek samazināts, iekļaujot datus jūsu telpā attiecīgajos laukos. Un pie produkcijas jums ir gatavs rezultāts: šī modeļa sadaļu skaits gabalos.

Aksiālais attālums tiek noteikts starp dzesēšanas šķidruma atveru centriem

Bet, ja jūs vienkārši mēģināt izdomāt iespējamās iespējas, tad ir vērts apsvērt, ka tāda paša izmēra radiatori no dažādiem materiāliem ir atšķirīgi siltuma jauda. Metode, kā aprēķināt bimetāla radiatoru daļu skaitu alumīnija, tērauda vai čuguna aprēķināšanai, nav atšķirīga. Tikai vienas sadaļas siltuma jauda var būt atšķirīga.

Lai to aprēķinātu, ir vieglāk, ir vidējie dati, ar kuriem var pārvietoties. Vienai radiatora sekcijai, kuras asi ir 50 cm, tiek ņemtas šādas jaudas vērtības:

  • alumīnijs - 190W
  • bimetāla - 185W
  • čuguns - 145W.

Ja jūs vienkārši domājat, kuru materiālu izvēlēties, varat izmantot šos datus. Skaidrības labad mēs piedāvājam visvienkāršāko bimetāla radiatoru sekciju aprēķinu, kurā tiek ņemta vērā tikai telpas telpa.

Nosakot sildītāju skaitu no standarta izmēra bimetāla (centra attālums 50cm), tiek pieņemts, ka vienā sadaļā var uzsildīt 1,8 m 2 platību. Tad 16 m 2 telpās jums nepieciešams: 16 m 2 / 1.8 m 2 = 8.88 gab. Mēs aprindām - mums vajag 9 sadaļas.

Tāpat mēs domājam par čuguna vai tērauda barteru. Nepieciešamas tikai normas:

  • bimetāla radiators - 1,8 m 2
  • alumīnijs - 1,9-2,0 m 2
  • čuguns - 1,4-1,5 m 2.

Šie dati attiecas uz sadaļām, kuru savstarpējais attālums ir 50 cm. Mūsdienās modeļi tiek pārdoti no ļoti atšķirīgiem augstumiem: no 60 cm līdz 20 cm un pat zemāk. Modeļi 20cm un zemāk tiek saukti par apmalēm. Protams, to jauda atšķiras no noteiktā standarta, un, ja jūs plānojat izmantot "nestandarta", jums būs jāveic korekcijas. Vai arī meklējiet savus pases datus vai izlasiet to pats. Mēs pieņemam, ka siltuma ierīces siltuma izlaide tieši ir atkarīga no tās platības. Augstuma samazināšanās dēļ ierīces platība samazinās, un līdz ar to jauda samazinās proporcionāli. Tas ir, jums ir jāatrod izvēlētā radiatora augstuma attiecība ar standartu, un pēc tam izmantojiet šo koeficientu, lai koriģētu rezultātu.

Čuguna radiatoru aprēķins. Var aprēķināt pēc telpas vai tilpuma

Skaidrības labad mēs aprēķinām alumīnija radiatorus uz platību. Numurs ir vienāds: 16m 2. Mēs ieskauj standarta izmēra sekciju skaitu: 16m 2 / 2m 2 = 8 gab. Bet mēs vēlamies izmantot mazizmēra sekcijas 40 cm augstumā. Mēs atrodamies izvēlētā lieluma radiatoru attiecība pret standartu: 50cm / 40cm = 1.25. Un tagad mēs koriģējam summu: 8 gab * 1.25 = 10 gab.

Korekcija atkarībā no apkures sistēmas režīma

Pasu datu izgatavotāji norāda maksimālo radiatoru spēku: ar augstas temperatūras lietošanas režīmu - dzesēšanas šķidruma temperatūra 90 o C plūsmā, atgriešanās laikā - 70 o C (apzīmē 90/70) telpai jābūt 20 o C. Taču šajā režīmā modernās sistēmas apkure ir ļoti reta. Parasti vidējas jaudas režīms ir 75/65/20 vai pat zemas temperatūras ar parametriem 55/45/20. Ir skaidrs, ka aprēķins ir nepieciešams, lai labotu.

Lai ņemtu vērā sistēmas darbības režīmu, ir jānosaka sistēmas temperatūras galva. Temperatūras spiediens ir starpība starp gaisa temperatūru un sildīšanas ierīcēm. Šajā gadījumā sildītāju temperatūra tiek aprēķināta kā aritmētiskais vidējais lielums starp plūsmas un plūsmas vērtību.

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Lai padarītu to skaidrāku, mēs veiksim čuguna radiatoru aprēķinus diviem režīmiem: augsta temperatūra un zemas temperatūras standarta izmēra sekcijas (50 cm). Numurs ir vienāds: 16m 2. Augstas temperatūras režīmā, 90/70/20, viena čuguna daļa paaugstina 1,5 m 2. Tā kā mums ir nepieciešams 16m 2 / 1.5m 2 = 10,6 gab. Noapaļot uz augšu - 11 gab. Sistēma plāno izmantot zemas temperatūras režīmu 55/45/20. Tagad mēs atrodam temperatūras spiedienu katrai sistēmai:

  • augsta temperatūra 90/70 / 20- (90 + 70) / 2-20 = 60 o C;
  • zemas temperatūras 55/45/20 - (55 + 45) / 2-20 = 30 o C.

Tas nozīmē, ka, ja tiek izmantots zemas temperatūras darbības režīms, telpā ar siltumu ir nepieciešamas divas reizes vairāk sekciju. Mūsu piemērs ir nepieciešams, lai 16m 2 telpā būtu nepieciešamas 22 čuguna radiatoru daļas. Izrādās liels akumulators. Tas, starp citu, ir viens no iemesliem, kāpēc šāda veida sildītājs nav ieteicams izmantot tīklos ar zemu temperatūru.

Ar šo aprēķinu jūs varat ņemt vērā vēlamo gaisa temperatūru. Ja vēlaties, lai telpa nebūtu 20 ° C, piemēram, 25 ° C, vienkārši aprēķiniet siltuma spiedienu šim gadījumam un atrodiet vajadzīgo koeficientu. Darīsim aprēķinus tiem pašiem čuguna radiatoriem: parametri būs 90/70/25. Mēs uzskatām temperatūras spiedienu šim gadījumam (90 + 70) / 2-25 = 55 o C. Tagad mēs atrodam attiecību 60 o C / 55 o C = 1,1. Lai nodrošinātu temperatūru 25 ° C, jums vajag 11 vnt. * 1,1 = 12,1 gab.

Radiatora jaudas atkarība no savienojuma un atrašanās vietas

Papildus visiem iepriekš aprakstītajiem parametriem radiatora siltuma jauda mainās atkarībā no savienojuma veida. Labāko uzskata par diagonālo savienojumu ar plūsmu no augšas, tādā gadījumā nav siltuma zudumu. Vislielākie zudumi vērojami ar sānu savienojumu - 22%. Visi pārējie efektivitātes vidējie rādītāji. Aptuvenās vērtības zaudējumiem procentos parādīts attēlā.

Siltuma zudumi radiatoros atkarībā no savienojuma

Radiatora faktiskā jauda tiek samazināta arī bloķējošu elementu klātbūtnē. Piemēram, ja sliekšņa karājas no augšas, siltuma jauda samazinās par 7-8%, ja tas pilnībā nenosedz radiatoru, tad zaudējumi ir 3-5%. Uzstādot acu ekrānu, kas nesasniedz grīdu, zaudējumi ir aptuveni tādi paši kā paliktņa pārsega gadījumā: 7-8%. Bet, ja ekrāns pilnībā aptver visu sildītāju, tā siltuma padeve tiek samazināta par 20-25%.

Siltuma daudzums ir atkarīgs no uzstādīšanas

Siltuma daudzums ir atkarīgs no uzstādīšanas vietas.

Radiatoru daudzuma noteikšana monotube sistēmām

Ir vēl viens ļoti svarīgs jautājums: viss iepriekš minētais attiecas uz divu cauruļu apkures sistēmu, kad dzesēšanas šķidrums ar tādu pašu temperatūru nonāk pie katra radiatora ieejas. Viena cauruļvadu sistēma tiek uzskatīta par daudz sarežģītāku: tur, ūdens kļūst arvien vairāk aukstāks katram nākamajam sildītājam. Un, ja jūs vēlaties aprēķināt radiatoru skaitu viencaurules sistēmai, katru reizi jāpārrēķina temperatūra, un tas ir grūti un laikietilpīgi. Kāda ir izeja? Viena no iespējām ir noteikt radiatoru spēku kā divu cauruļu sistēmai, un pēc tam, proporcionāli siltuma izlaides kritumam, pievienojiet sekcijas, lai palielinātu akumulatora kopējo siltumu.

Monotube sistēmā ūdens katram radiatorim kļūst arvien vairāk aukstāks.

Paskaidrosim ar piemēru. Diagramma parāda viencaurules apkures sistēmu ar sešiem radiatoriem. Bateriju skaits ir noteikts divu cauruļu vadiem. Tagad jums ir jāveic korekcija. Pirmajam sildītājam viss paliek nemainīgs. Otrajā vietā jau ir dzesēšanas šķidrums ar zemāku temperatūru. Mēs nosaka% jaudas kritumu un palielina sekciju skaitu ar atbilstošo vērtību. Attēls ir šāds: 15kW-3kW = 12kW. Atrodiet procentuālo attiecību: temperatūras kritums ir 20%. Tādējādi, lai kompensētu, mēs palielinām radiatoru skaitu: ja jums vajag 8 gab, tas būs par 20% - 9 vai 10 gab. Tas ir tas, kur zināšanas par istabu ir noderīgas: ja tā ir guļamistaba vai bērnudārzs, apaļ tās uz augšu, ja tā ir dzīvojamā istaba vai cita līdzīga telpa, apaļo to līdz mazākajam. Ņem vērā atrašanās vietu pasaules malās: ziemeļu kārta līdz lielai, dienvidos - uz mazāku.

Monotube sistēmās ir nepieciešams pievienot sekcijas radiatoros, kas atrodas tālāk gar filiāli

Šī metode acīmredzami nav ideāla: galu galā izrādās, ka pēdējam akumulatoram filiālē vajadzētu būt vienkārši milzīgu izmēru: pēc sistēmas principa, dzesēšanas šķidrums ar īpašu siltumietilpību, kas vienāda ar tās jaudu, tiek piegādāts līdz tā ievadam, un praktiski nav iespējams pilnībā noņemt 100%. Tāpēc, nosakot katla jaudu monotube sistēmām, parasti ir nepieciešams veikt kādu rezervi, uzstādīt slēgierīces un savienot radiatorus caur apvadi, lai varētu regulēt siltuma pārnesi, tādējādi kompensējot dzesēšanas šķidruma temperatūras kritumu. No visa šī ir viena lieta: ir jāpalielina viencauruļu sistēmas un / vai radiatoru izmēru skaits, un, palielinoties attālumam no filiāles sākuma, tiks uzstādītas vairāk un vairāk sekcijas.

Rezultāti

Radiatoru sekciju aptuvenais aprēķins ir vienkāršs un ātrs. Bet skaidrojums, kas atkarīgs no visām telpu īpašībām, lieluma, savienojuma veida un atrašanās vietas, prasa uzmanību un laiku. Bet jūs varat precīzi noteikt sildītāju skaitu, lai ziemā radītu komfortablu atmosfēru.

Radiatoru aprēķins apgabalā

Viens no svarīgākajiem mājsaimniecības vai dzīvokļa ērtā dzīves apstākļu radīšanas jautājumiem ir uzticama, pareizi aprēķināta un samontēta, labi sabalansēta apkures sistēma. Tieši tādēļ šādas sistēmas izveide ir vissvarīgākais uzdevums, organizējot savas mājas celtniecību vai veicot kapitālremontu daudzstāvu dzīvoklī.

Neraugoties uz mūsdienu dažādu veidu apkures sistēmu dažādību, pārbaudīta sistēma vēl arvien ir līderis popularitātes ziņā: cauruļu kontūras ar dzesēšanas šķidrumu, kas cirkulē caur tām, un siltuma apmaiņas ierīces - radiatorus uzstāda telpās. Šķiet, ka viss ir vienkāršs, baterijas ir zem logiem un nodrošina vajadzīgo siltumu... Taču ir jāzina, ka siltuma padevei no radiatoriem jāatbilst gan grīdas laukumam, gan vairākiem citiem specifiskiem kritērijiem. Siltuma aprēķini, kuru pamatā ir SNiP prasības, ir diezgan sarežģīta procedūra, ko veic speciālisti. Tomēr to iespējams izpildīt pats par sevi, protams, pieļaujot vienkāršošanu. Šajā publikācijā tiks paskaidrots, kā patstāvīgi aprēķināt apsildāmās telpas zonas radiatorus, ņemot vērā dažādas nianses.

Radiatoru aprēķins apgabalā

Bet, lai sāktu, jums vismaz īsumā jāpārzina esošie apkures radiatori - aprēķinu rezultāti lielā mērā būs atkarīgi no to parametriem.

Īsi par esošajiem radiatoru tipiem

Mūsdienu radiatoru klāsts, kas tiek pārdots, ietver šādus tipus:

  • Tērauda radiatori paneļa vai cauruļveida konstrukcijas.
  • Čuguna akumulatori.
  • Vairāku modifikāciju alumīnija radiatori.
  • Bimetāla radiatori.

Tērauda radiatori

Šis radiatora tips nav ieguvis lielu popularitāti, neskatoties uz to, ka dažiem modeļiem ir piešķirts ļoti elegants dizains. Problēma ir tāda, ka šādu siltuma padeves ierīču trūkumi ievērojami pārsniedz to priekšrocības - zemu cenu, salīdzinoši zemu svaru un ērtu uzstādīšanu.

Tērauda radiatoriem ir daudz trūkumu

Šādu radiatoru plānās tērauda sienas nav pietiekami siltumizturīgas - tās ātri sasilst, bet tās arī tik ātri atdziest. Var rasties problēmas ar hidrauliskiem triecieniem - metinātās lokšņu locītavas dažkārt izdala noplūdes. Bez tam zemu izmaksu modeļi, kuriem nav īpaša pārklājuma, ir uzņēmīgi pret koroziju, un šādu bateriju kalpošanas laiks nav garš - ražotāji parasti sniedz neilgu garantiju darbības ilgumam.

Lielākajā daļā gadījumu tērauda radiatori ir viengabala konstrukcija, un mainot siltuma pārnesi, mainot sekciju skaitu, tas neļauj. Viņiem ir vārtu plāksnes siltuma jauda, ​​kas nekavējoties jāizvēlas, pamatojoties uz platību un telpas elementiem, kur tos paredzēts uzstādīt. Izņēmums ir tāds, ka dažiem cauruļveida radiatoriem ir iespēja mainīt sekciju skaitu, bet tas parasti tiek veikts pēc pasūtījuma, ražošanas laikā, nevis mājās.

Čuguna radiatori

Šāda veida bateriju pārstāvji, iespējams, ir pazīstami ikvienam jau kopš agras bērnības - tas bija tas harmonikas, kas iepriekš tika instalētas burtiski visur.

Čuguna radiators MC-140-500, pazīstams ikvienam no bērnības

Varbūt šie baterijas MS -140-500 un neatšķīrās ar īpašu žēlastību, bet viņi patiešām apkalpoja vairāk nekā vienu īrnieku paaudzi. Katrs šāda radiatora sekcija nodrošina 160 vatu siltuma pārnesi. Radiators ir modulārs, un sekciju skaits principā neaprobežojas ar neko.

Mūsdienu čuguna radiatori

Pašlaik tiek pārdoti daudzi mūsdienīgi čuguna radiatori. Tās jau atšķiras ar elegantu izskatu, gludām un gludām ārējām virsmām, kas atvieglo tīrīšanu. Ir pieejamas arī ekskluzīvas iespējas ar interesantu reljefu dzelzs liešanas modeli.

Ar visu to, šādi modeļi pilnībā saglabā čuguna bateriju galvenās priekšrocības:

  • Čuguna lielā siltumietilpība un bateriju masīvība veicina ilgtermiņa saglabāšanu un augstu siltuma pārnesi.
  • Čuguna akumulatori, ar atbilstošu montāžu un augstas kvalitātes blīvēšanas savienojumiem, nebaidās no āmura, temperatūras izmaiņām.
  • Biezas čuguna sienas ir mazāk uzņēmīgas pret koroziju un abrazīvu nodilumu. Gandrīz jebkuru siltumnesēju var izmantot, tāpēc šādas baterijas ir vienlīdz labas gan autonomām, gan centrālām apkures sistēmām.

Ja neņem vērā veco čuguna akumulatoru ārējos datus, tad no nepilnībām var atzīmēt, ka metāla trauslums (akcentētie streiki ir nepieņemami), relatīvā sarežģītība uzstādīšanā, kas vairāk saistīta ar masīvību. Turklāt ne visas sienas starpsienas var izturēt šādu radiatoru svaru.

Alumīnija radiatori

Alumīnija radiatori, kas parādījās salīdzinoši nesen, ļoti ātri ieguva popularitāti. Tie ir salīdzinoši lēti, moderni, diezgan eleganti, ar lielisku siltuma izkliedi.

Izvēloties alumīnija radiatorus, jāņem vērā dažas svarīgas nianses

Augstas kvalitātes alumīnija baterijas spēj izturēt spiedienu 15 vai vairāk atmosfēras, dzesēšanas šķidruma augstā temperatūra ir aptuveni 100 grādi. Šajā gadījumā dažu modeļu vienas sadaļas siltuma efektivitāte dažkārt sasniedz 200 vati. Bet tajā pašā laikā tie ir mazs svaru (slīpuma svars parasti ir līdz 2 kg) un nav nepieciešams liels siltuma nesējs (jauda nav lielāka par 500 ml).

Alumīnija radiatori ir komerciāli pieejami kā iezvanpieejas baterijas, ar iespēju mainīt sekciju skaitu un cietus izstrādājumus, kas paredzēti konkrētai jaudai.

Alumīnija radiatoru trūkumi:

  • Daži tipi ir ļoti jutīgi pret alumīnija skābekļa koroziju, vienlaikus rada lielu gāzes veidošanās risku. Tas rada īpašas prasības dzesēšanas šķidruma kvalitātei, tādēļ šīs baterijas parasti uzstāda autonomās apkures sistēmās.
  • Daži alumīnija radiatori ar neatdalāmu struktūru, kuras daļas ir izgatavotas, izmantojot ekstrūzijas tehnoloģiju, dažos nelabvēlīgos apstākļos var izraisīt noplūdi locītavās. Tajā pašā laikā veikt remontu - tas vienkārši nav iespējams, un jums būs jāmaina viss akumulators kopumā.

No visām alumīnija baterijām visaugstāko kvalitāti iegūst, izmantojot oksidāciju ar anodu metālu. Šie produkti praktiski nebaidās no skābekļa korozijas.

No ārpuses visi alumīnija radiatori ir aptuveni vienādi, tāpēc, izdarot izvēli, rūpīgi jāizlasa tehniskā dokumentācija.

Bimetāla apkures radiatori

Šādi radiatori ar savu uzticamību izaicina pārākumu ar čugunu un siltuma efektivitāti - ar alumīnija elementiem. Iemesls tam ir to īpašais dizains.

Bimetāla radiatora struktūra

Katra sadaļa sastāv no diviem, augšējiem un apakšējiem, tērauda horizontāliem kolektoriem (1. poz.), Kas savienoti ar to pašu vertikālo tērauda kanālu (2. poz.). Savienojumu vienā baterijā veido augstas kvalitātes vītņoti savienojumi (3. poz.). Augsta termolīze ir aprīkota ar ārējo alumīnija pārklājumu.

Tērauda iekšējās caurules ir izgatavotas no metāla, kas nav uzņēmīgi pret koroziju vai ir aizsargājoša polimēra pārklājuma. Nu, alumīnija siltummainis nekādā gadījumā nav saskarē ar dzesēšanas šķidrumu, un korozija to pilnīgi nebaidās.

Tādējādi tiek iegūta augstas izturības un nodiluma izturības kombinācija ar lielisku siltuma veiktspēju.

Šādas baterijas nebaidās pat ļoti lielu spiediena pieaugumu, augstu temperatūru. Patiesībā tie ir universāli un piemēroti visām apkures sistēmām, tomēr tie joprojām parāda vislabāko veiktspēju centrālās sistēmas augsta spiediena apstākļos - tie nav piemēroti ķēdēm ar dabisku cirkulāciju.

Varbūt viņu vienīgais trūkums ir augstā cena, salīdzinot ar citiem radiatoriem.

Uztveres ērtībai ir tabula, kurā ir doti radiatoru salīdzināmie rādītāji. Leģenda tajā:

  • TC - cauruļveida tērauds;
  • Chg - čuguns;
  • Al - parasts alumīnijs;
  • AA - anodēta alumīnija;
  • BM - bimetāla.

Video: ieteikumi radiatoru izvēlei

Kā aprēķināt vajadzīgo radiatora sekciju skaitu

Ir skaidrs, ka telpā uzstādītajam radiatoram (vienam vai vairākiem) ir jānodrošina sasilšana līdz komfortablām temperatūrām un jānovērš neizbēgami siltuma zudumi neatkarīgi no laika apstākļiem ārpusē.

Aprēķinu bāze vienmēr ir telpas platība vai tilpums. Profesionālie aprēķini paši ir ļoti sarežģīti un ņem vērā ļoti daudzus kritērijus. Bet iekšzemes vajadzībām jūs varat izmantot vienkāršotas metodes.

Vieglākais veids, kā aprēķināt

Tiek uzskatīts, ka, lai radītu normālus apstākļus standarta dzīvojamā rajonā, pietiek ar 100 W uz kvadrātmetru. Tādējādi jums vajadzētu aprēķināt tikai telpas platību un reizināt ar 100.

Q = S × 100

Q - nepieciešamā siltuma emisija no radiatoriem.

S ir apsildāmās telpas platība.

Ja jūs plānojat uzstādīt neatdalāmu radiatoru, tad šī vērtība kļūs par vadlīniju nepieciešamā modeļa izvēlei. Gadījumā, ja ir uzstādīti baterijas, kas ļauj mainīt sekciju skaitu, jāveic vēl viens aprēķins:

N = Q / Qus

N ir aprēķinātais sekciju skaits.

Qus - īpaša siltuma jauda vienā sadaļā. Šī vērtība ir obligāti norādīta produkta tehniskajā pase.

Kā redzat, šie aprēķini ir ļoti vienkārši, un tiem nav nepieciešamas nekādas īpašas matemātikas zināšanas - tikai ar ruletes ratu ir pietiekami, lai izmērītu telpu un papīru gabaliņam aprēķināšanai. Papildus tam varat izmantot nākamo tabulu - tiek aprēķinātas dažādu izmēru telpu un atsevišķu apkures sekciju jaudas aprēķinātās vērtības.

Sadaļu tabula

Tomēr jāatceras, ka šīs vērtības attiecas uz augstceltnes standarta griestu augstumu (2,7 m). Ja telpas augstums atšķiras, labāk ir aprēķināt akumulatora sekciju skaitu, ņemot vērā telpas ietilpību. Šim nolūkam izmanto vidējo rādītāju - 41 Vt t siltuma jaudu 1 m³ apjomā paneļu mājā, vai 34 W - ķieģeļu mājā.

Q = S × h × 40 (34)

kur h ir griestu augstums virs grīdas līmeņa.

Papildu aprēķins - neatšķiras no iepriekšminētā.

Detalizēts aprēķins, ņemot vērā telpas īpašības

Un tagad par nopietnākiem aprēķiniem. Iepriekš minētā vienkāršotā aprēķina metode var dot mājokļa vai dzīvokļa īpašniekiem "pārsteigumu". Ja uzstādīti radiatori neveidos vēlamo komforta klimatu dzīvojamos rajonos. Un šī iemesla dēļ ir viss saraksts ar niansēm, ko aplūkotajā metodē vienkārši neņem vērā. Tikmēr šādas nianses var būt ļoti svarīgas.

Tātad, telpu platība un visi tie paši 100 W mēnesī tiek atkal ņemti. Bet pati formula jau izskatās nedaudz atšķirīga:

Q = S × 100 × A × B × C × D × E × F × G × H × I × J

Burti no A līdz J parasti apzīmē koeficientus, kas ņem vērā telpas īpašības un radiatoru uzstādīšanu tajā. Apsveriet tos kārtībā:

Un - ārējo sienu skaits telpā.

Ir skaidrs, ka jo augstāka ir telpas kontakts ar ielu, tas ir, jo vairāk ārējās sienas telpā, jo augstāks ir kopējie siltuma zudumi. Šī atkarība ņem vērā koeficientu A:

  • Viena ārējā siena - A = 1, 0
  • Divas ārējās sienas - A = 1, 2
  • Trīs ārsienas - A = 1, 3
  • Visas četras sienas ir ārējās - A = 1, 4

B - telpas orientācija galvenajos virzienos.

Maksimālie siltuma zudumi vienmēr ir telpās, kurās nav tiešu saules staru. Tas neapšaubāmi ir mājas ziemeļu daļa, un šeit jūs varat iekļaut arī austrumu pusi - Saules stari nāk šeit tikai no rīta, kad gaisma vēl bija "pilnā spēkā".

Istabu sasilšana lielā mērā ir atkarīga no to atrašanās vietas attiecībā pret galvenajiem punktiem.

Saule ir daudz spēcīgāka par Saules ūdensmītu dienvidu un rietumu pusēm.

Tādējādi koeficienta B vērtības:

  • Numurs ir vērsts uz ziemeļiem vai austrumiem - B = 1, 1
  • Dienvidu vai rietumu telpas - B = 1, tas ir, nevar tikt uzskaitīti.

C - koeficients, ņemot vērā sienu izolācijas pakāpi.

Ir skaidrs, ka siltuma zudumi no apsildāmās telpas būs atkarīgi no ārējo sienu siltumizolācijas kvalitātes. Koeficienta vērtība ir vienāda ar:

  • Vidus līmenis - sienas apšuvušas ar divām ķieģeļiem, vai to virsmas izolācija ir aprīkota ar citu materiālu - C = 1, 0
  • Ārējās sienas nav izolētas - С = 1, 27
  • Augsts izolācijas līmenis, pamatojoties uz siltuma aprēķiniem - C = 0,85.

D - reģiona klimatisko apstākļu iezīmes.

Protams, nav iespējams pielīdzināt visus nepieciešamos sildīšanas jaudas pamatrādītājus "vienam izmēram piemērots visiem" - tie arī ir atkarīgi no konkrētajā teritorijā raksturīgo negatīvo ziemas temperatūru līmeņa. Tas ņem vērā koeficientu D. Lai to izvēlētos, janvāra aukstākajā desmitgadē tiek ņemtas vidējās temperatūras - parasti šo vērtību ir viegli noteikt vietējā hidrometeoroloģijas dienestā.

  • - 35 ° С un zemāk - D = 1, 5
  • - 25 ÷ - 35 ° С - D = 1, 3
  • līdz -20 ° С - D = 1, 1
  • ne zemāka par - 15 ° С - D = 0, 9
  • ne zemāk kā - 10 ° С - D = 0, 7

Е - telpu griestu augstuma koeficients.

Kā jau minēts, standarta griestu augstuma vidējā vērtība ir 100 W / m². Ja tas ir atšķirīgs, jāievieš korekcijas koeficients E:

  • Līdz 2, 7 m - E = 1, 0
  • 2,8 - 3, 0 m - E = 1, 05
  • 3.1 - 3, 5 m - E = 1, 1
  • 3.6 - 4, 0 m - E = 1, 15
  • Vairāk par 4,1 m - E = 1, 2

F - koeficients, ņemot vērā telpas tipu, kas atrodas augšā

Sakārtot apkures sistēmu telpās ar aukstām grīdām - bezjēdzīgi uzdevumi, un īpašnieki vienmēr šajā jautājumā rīkojas. Bet iepriekš minētās telpas veids bieži vien nav atkarīgs no tiem. Tikmēr, ja uz augšu atrodas dzīvojamā vai izolētā telpa, kopējā siltumenerģijas nepieciešamība ievērojami samazināsies:

  • auksts mansarda vai neapsildīta telpa - F = 1, 0
  • siltā bēniņos (ieskaitot apsildāmu jumtu) - F = 0, 9
  • apsildāma istaba - F = 0,8

G - uzstādītā loga tipa grāmatvedības koeficients.

Dažādiem loga modeļiem ir dažādi siltuma zudumi. Tas ņem vērā koeficientu G:

  • parasto koka rāmji ar dubultu stiklojumu - G = 1, 27
  • logi ir aprīkoti ar vienkameras dubultstiklveida logu (2 glāzes) - G = 1, 0
  • vienkameras stikla pakete ar argona pildījumu vai dubultā stikla pakete (3 glāzes) - G = 0,85

N - kvadrātveida stikla stiklojuma telpas koeficients.

Kopējais siltuma zudumu apjoms ir atkarīgs no telpu uzstādītās loga kopējās platības. Šo vērtību aprēķina, pamatojoties uz loga platības attiecību pret telpas platību. Atkarībā no iegūtā rezultāta mēs atrodam koeficientu H:

  • Ratio mazāks par 0,1 - H = 0,8
  • 0.11 ÷ 0.2 - H = 0, 9
  • 0,21 ÷ 0,3 - H = 1, 0
  • 0,31 ÷ 0,4 - H = 1, 1
  • 0,41 - 0,5 - H = 1, 2

I - koeficients, ņemot vērā radiatoru pieslēguma shēmu.

Par to, kā radiatori ir savienoti ar pievades un izvades caurulēm, ir atkarīga to siltuma padeve. Tas jāņem vērā arī plānojot iekārtu un nosakot nepieciešamo sekciju skaitu:

Radiatoru shēmas ievieto apkures lokā

  • a - diagonālais savienojums, plūsma no augšas, atgriešanās no apakšas - I = 1, 0
  • b - vienvirziena savienojums, barība no augšas, atgriešanās no apakšas - I = 1, 03
  • c - divvirzienu savienojums, un piegāde, un atgriešanās no apakšas - I = 1, 13
  • g - diagonālais savienojums, plūsma no apakšas, atgriešanās no augšas - I = 1, 25
  • d - vienvirziena savienojums, plūsma no apakšas, atgriešanās no augšas - I = 1, 28
  • e - atgriešanās un piegādes savienojums vienā pusē zemāk - I = 1, 28

J koeficients, ņemot vērā uzstādīto radiatoru atvērtības pakāpi.

Daudz kas ir atkarīgs no tā, cik baterijām ir uzstādīta brīva siltuma apmaiņa ar telpas gaisu. Esošie vai mākslīgi radītie šķēršļi var ievērojami samazināt siltuma pārnesi no radiatora. Tas ņem vērā J koeficientu:

Bateriju siltuma pārnesi ietekmē vieta un veids, kā tos uzstādīt telpās.

a - radiators atrodas atklāti uz sienas vai nav klāts ar palodzi - J = 0, 9

b - radiators ir pārklāts no augšas ar palodzi vai plauktu - J = 1, 0

in - radiators ir pārklāts no augšas ar horizontālu sienas niša - J = 1, 07

d - radiators ir pārklāts no augšas ar palodzi, un no priekšpuses - daļēji pārklāts ar dekoratīvu korpusu - J = 1, 12

d - radiators ir pilnībā pārklāts ar dekoratīvu pārklājumu - J = 1, 2

⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Nu, visbeidzot, tas viss. Tagad jūs varat aizstāt nepieciešamās vērtības un koeficientus, kas atbilst nosacījumiem, formulā, un izeja dos nepieciešamo siltuma jaudu, lai telpā varētu droši apsildīt, ņemot vērā visas nianses.

Pēc tam tas vai nu izvēlēsies neatdalāmu radiatoru ar nepieciešamo siltuma jaudu, vai arī aprēķināto vērtību dalīs ar konkrētā modeļa akumulatora atsevišķās siltuma jaudu.

Protams, daudzi cilvēki uzskata, ka šāda aplēse ir pārāk apgrūtinoša, un to var viegli sajaukt. Lai atvieglotu aprēķinus, ieteicams izmantot īpašu kalkulatoru - tajā jau ir visas nepieciešamās vērtības. Lietotājam ir nepieciešams tikai ievadīt pieprasītās sākotnējās vērtības vai atlasīt vajadzīgās pozīcijas no sarakstiem. Noklikšķiniet uz pogas "aprēķināt", līdz ar uzapaļošanu uzreiz tiks iegūts precīzs rezultāts.

Kalkulators radiatoru precīzai aprēķināšanai

Izdevuma autore, un viņš - kalkulatora autors, cer, ka mūsu portāla apmeklētājs ir saņēmis pilnīgu informāciju un labu palīdzību pašnovērtējumam.

Top