Kategorija

Iknedēļas Ziņas

1 Sūkņi
Kā veidot katlu telpu privātmājā: dizaina standarti un ierīces
2 Katli
kalkulatora kalkulators:
radiatora sekciju skaits telpu apkurei
3 Degviela
Vai ir izdevīgi ievietot individuālus siltuma skaitītājus dzīvoklī un kā to izdarīt pareizi
4 Degviela
Kā silda siltumnīcas? Apkures metodes, īpašības un praktiski ieteikumi
Galvenais / Katli

Kā aprēķināt radiatora sekciju skaitu


Modernizējot apkures sistēmu, papildus nomainot caurules, tās arī maina radiatorus. Un šodien tie ir no dažādiem materiāliem, dažādu formu un izmēru. Tikpat svarīgi ir arī dažādi siltuma pārnese: siltuma daudzums, kas var pāriet gaisā. Un tas noteikti tiek ņemts vērā, veicot radiatoru sekciju aprēķinu.

Numurs būs silts, ja tiks kompensēta siltuma daudzums, kas iet prom. Tāpēc aprēķinos tiek ņemti vērā telpu siltuma zudumi (tie ir atkarīgi no klimatiskās zonas, no sienas materiāla, izolācijas, logu laukuma utt.). Otrais parametrs ir vienas sadaļas siltuma jauda. Tas ir siltuma daudzums, ko tas var ražot, pie maksimālajiem sistēmas parametriem (90 ° C pie ieplūdes un 70 ° C kontaktligzdā). Šis raksturlielums jānorāda pasē, bieži uz iepakojuma.

Radiatoru sekciju skaitu aprēķina ar savām rokām, ņemot vērā telpu un apkures sistēmas īpašības

Viens svarīgs jautājums: veicot aprēķinus pats, ņemiet vērā, ka lielākā daļa ražotāju nosaka maksimālo skaitu, ko viņi saņēma ideālos apstākļos. Tā kā jebkura noapaļošana rada lielu ceļu. Zemas temperatūras apsildīšanas gadījumā (siltumnesēja temperatūra pie ieejas ir zemāka par 85 ° C) tiek meklēta vai pārrēķināta siltuma jauda attiecīgajiem parametriem (aprakstīts turpmāk).

Platības aprēķins

Šī ir visvienkāršākā metode, kas ļauj aptuveni aprēķināt telpu apsildīšanai nepieciešamo sekciju skaitu. Pamatojoties uz daudziem aprēķiniem, tiek iegūtas vidējās siltumietilpības normas uz kvadrātmetru. Lai ņemtu vērā reģiona klimatiskos apstākļus, SNiP paredzētas divas normas:

  • Krievijas centrālajiem reģioniem ir nepieciešams no 60 W līdz 100 W;
  • platībām virs 60 °, sildīšanas ātrums uz kvadrātmetru ir 150-200 vati.

Kādēļ normās, kas piešķirtas tik lielam diapazonam? Lai varētu ņemt vērā sienu materiālus un izolācijas pakāpi. Betona mājas iegūst ķieģeļu maksimālās vērtības, varat izmantot vidējo. Siltām mājām - minimums. Vēl viena svarīga detaļa: šie standarti tiek aprēķināti vidējam griestu augstumam - ne vairāk kā 2,7 metri.

Kā aprēķināt radiatora sekciju skaitu: formula

Zinot telpas platību, reiziniet siltuma izmaksas, kas ir vispiemērotākās jūsu apstākļiem. Jūs saņemat vispārējos siltuma zudumus telpā. Izvēlētajā radiatora modeļa tehniskajos datos atrodiet vienas sadaļas siltuma jaudu. Jūs sadalāt kopējos siltuma zudumus ar jaudu, jūs saņemat to skaitu. Tas ir viegli, bet, lai padarītu to skaidrāku, mēs sniedzam piemēru.

Piemērs radiatoru sekciju skaita aprēķinam uz grīdas laukuma

Stūra istaba 16 m 2, vidējā joslā, ķieģeļu mājā. Ievietojiet akumulatoru ar 140 vatu siltuma jaudu.

Ķieģeļu namā mēs saskaramies ar siltuma zudumiem diapazona vidū. Tā kā istaba ir leņķiska, labāk ir ņemt lielāku vērtību. Ļaujiet tai būt 95 vatus. Tad izrādās, ka telpas apkurei nepieciešams 16 m 2 * 95 W = 1520 W.

Tagad skatiet numuru: 1520 W / 140 W = 10,86 gab. Kārta, izrādās, 11 gab. Tik daudziem radiatoru posmiem būs jāinstalē.

Teritorijas radiatoru aprēķins ir vienkāršs, bet tālu no perfekta: griestu augstums tiek pilnībā ignorēts. Ar nestandarta augstumu tiek izmantota vēl viena metode: pēc tilpuma.

Mēs skaita baterijas pēc tilpuma

SNiP ir normas un telpu kubikmetru apkure. Tie tiek doti dažādu veidu ēkām:

  • ķieģeļu uz 1 m 3, nepieciešams 34 W siltuma;
  • paneļa gadījumā - 41 W

Šis radiatora sekciju aprēķins ir līdzīgs iepriekšējam, tikai tagad tas nav nepieciešams apgabals, bet apjomu un standartus ņem citi. Sējums tiek reizināts ar normu, un iegūtais skaitlis dalās ar radiatora vienas daļas (alumīnija, bimetāla vai čuguna) jaudu.

Formula sadalījumu skaita aprēķināšanai pēc tilpuma

Aprēķina pēc tilpuma piemērs

Piemēram, mēs aprēķinām, cik daudz sadaļu ir nepieciešams telpā ar platību 16 m 2 un griestu augstumu 3 metri. Ēka ir izgatavota no ķieģeļiem. Radiatori izmanto tādu pašu jaudu: 140 W:

  • Atrodiet skaļumu. 16 m 2 * 3 m = 48 m 3
  • Mēs uzskatām nepieciešamo siltuma daudzumu (ķieģeļu ēku norma ir 34 W). 48 m 3 * 34 W = 1632 W.
  • Noteikt, cik daudz sadaļu ir vajadzīgs. 1632 W / 140 W = 11,66 gab. Kārta, mēs iegūstam 12 gabalus.

Tagad jūs zināt divus veidus, kā aprēķināt radiatoru skaitu katrā telpā.

Siltuma transmisija uz sekciju

Šodien radiatoru klāsts ir liels. Ja ārējās vairākuma līdzības dēļ siltuma veiktspēja var ievērojami atšķirties. Tie ir atkarīgi no materiāla, no kura tie ir izgatavoti, pēc izmēra, sienas biezuma, iekšējās šķērsgriezuma un par to, cik labi struktūra tiek pārdomāta.

Tāpēc ir iespējams precīzi pateikt, cik daudz kW ir 1 alumīnija (čuguna bimetāla) radiatora daļa tikai katram modelim. Šie dati norāda ražotāju. Galu galā ir būtiskas izmēru atšķirības: daži no tiem ir garš un šaurs, citi ir zemi un dziļi. Tā paša ražotāja viena augstuma jaudas sadaļa, bet dažādi modeļi var atšķirties no 15 līdz 25 W (skatīt tabulu STYLE 500 un STYLE PLUS 500). Vēl vairāk taustāmas atšķirības var būt no dažādiem ražotājiem.

Dažu bimetāla radiatoru tehniskie parametri. Lūdzu, ņemiet vērā, ka šo sadaļu siltuma jaudai var būt ievērojama atšķirība.

Tomēr, lai sākotnēji novērtētu, cik daudz akumulatoru sekcijas ir vajadzīgas telpu apkurei, vidējā temperatūrā katras radiatora tipa siltuma jaudas vērtības tika iegūtas. Tos var izmantot aptuvenu aprēķinu veikšanai (dati sniegti par baterijām ar 50 cm attālumu centrā):

  • Bimetāla - viena sadaļa piešķir 185 W (0,188 kW).
  • Alumīnijs - 190 W (0,19 kW).
  • Čuguns - 120 W (0,120 kW).

Precīzāk, cik daudz kilometru vienā bimetāla, alumīnija vai čuguna radiatora daļā jūs varat darīt, izvēloties modeli un lemjot par izmēriem. Ļoti liela var būt čuguna bateriju atšķirība. Tās ir ar plānām vai biezām sienām, kuru dēļ to siltuma jauda ievērojami mainās. Iepriekš ir vidējās baterijas parastajā formā (akordeons) un tuvu tam. Radiatoriem "retro" stilā vairākas reizes ir mazāka siltuma jauda.

Tie ir Turcijas firmas Demir Dokum čuguna radiatoru tehniskie raksturlielumi. Atšķirība ir vairāk nekā cieta. Viņa var būt vēl vairāk

Balstoties uz šīm SNiP vērtībām un vidējām normām, tika iegūts vidējais radiatora sekciju skaits uz 1 m 2:

  • bimetāla daļa sildīs 1,8 m 2;
  • alumīnijs - 1,9-2,0 m 2;
  • čuguns - 1,4-1,5 m 2;

Kā aprēķināt radiatora sekciju skaitu no šiem datiem? Vēl vieglāk. Ja jūs zināt telpas platību, daliet to ar faktoru. Piemēram, telpas 16 m 2 apmēram tā apkurei būs nepieciešama:

  • bimetāla 16 m 2 / 1,8 m 2 = 8,88 gab., noapaļošana - 9 gab.
  • alumīnijs 16 m 2/2 m 2 = 8 gab.
  • čuguna 16 m 2 / 1,4 m 2 = 11,4 gabali, noapaļoti - 12 gabali.

Šie aprēķini ir tikai aptuvenie. Par tiem jūs varēsiet aptuveni novērtēt sildīšanas ierīču iegādes izmaksas. Precīzi aprēķiniet radiatoru skaitu katrā telpā, varat izvēlēties modeli un pēc tam pārrēķināt skaitli atkarībā no tā, kāda ir dzesēšanas šķidruma temperatūra jūsu sistēmā.

Radiatoru sekciju aprēķins atkarībā no faktiskajiem apstākļiem

Vēlreiz pievēršam uzmanību faktam, ka vienas akumulatora daļas siltuma jauda ir norādīta ideāliem apstākļiem. Akumulators ģenerē tik daudz siltuma, ja tās dzesēšanas šķidrums pie ieplūdes atveras + 90 ° C, pie izplūdes atveres + 70 ° C un + 20 ° C tiek uzturēts telpās. Tas nozīmē, ka sistēmas temperatūras galva (saukta arī par "delta sistēmu") būs 70 ° C. Ko darīt, ja pie ieejas jūsu sistēma ir augstāka par + 70 ° C? vai ir nepieciešama istabas temperatūra + 23 ° C? Pārrēķināt deklarēto jaudu.

Lai to izdarītu, ir nepieciešams aprēķināt apkures sistēmas temperatūras galvu. Piemēram, pie piegādes jums ir + 70 ° C, pie izejas 60 ° C, un telpā jums ir nepieciešama temperatūra + 23 ° C. Mēs atrodam jūsu sistēmas deltu: vidējais ieplūdes un izplūdes temperatūras aritmētiskais vidējais mīnus istabas temperatūra.

Formula apkures sistēmas temperatūras aprēķināšanai

Mūsu gadījumā izrādās: (70 ° C + 60 ° C) / 2 - 23 ° C = 42 ° C. Delta šādiem apstākļiem 42 ° C Tālāk mēs atrodam šo vērtību reklāmguvumu tabulā (atrodas zemāk) un reizina deklarēto jaudu ar šo koeficientu. Mēs iemācīsim spēku, ko šī sadaļa varēs izdalīt jūsu apstākļiem.

Faktoru tabula apkures sistēmām ar dažādu temperatūru

Mēs atrodam slejās tonēti zilā krāsā, līnija ar delta 42 ° C. Tas atbilst koeficientam 0,51. Tagad mēs aprēķinām siltuma jaudu vienai radiatora sekcijai mūsu lietā. Piemēram, deklarētā jauda 185 W, piemērojot atrasto koeficientu, iegūstam: 185 W * 0.51 = 94.35 W. Gandrīz puse. Kad radiatora sekcijas tiek aprēķinātas, šī jauda jāaizstāj. Tikai ņemot vērā individuālos parametrus telpā, būs silts.

kalkulatora kalkulators:
radiatora sekciju skaits telpu apkurei

Aprēķinot nepieciešamo siltuma daudzumu, apsildāmās telpas platību aprēķina, pamatojoties uz vajadzīgā patēriņa aprēķinu 100 vati uz kvadrātmetru. Turklāt tiek ņemti vērā vairāki faktori, kas ietekmē telpas kopējo siltuma zudumu, un katrs no šiem faktoriem veicina kopējo aprēķina rezultātu.

Šī aprēķina metode ietver gandrīz visas nianses un balstās uz formulu, kas ļauj samērā precīzi noteikt vajadzību pēc telpas ar siltumenerģiju. Atliek dalīt rezultātu, kas iegūts no alumīnija, tērauda vai bimetāla radiatora vienas siltuma pārneses vērtības un ap to iegūto rezultātu.

Kā aprēķināt radiatoru sekciju skaitu

Radiatoru skaita aprēķināšanai ir vairākas metodes, taču to būtība ir vienāda: noskaidrojiet maksimālos telpas siltuma zudumus un pēc tam aprēķiniet nepieciešamo sildīšanas ierīču daudzumu, lai tos kompensētu.

Aprēķinu metodes ir atšķirīgas. Vienkāršākie sniedz aptuvenus rezultātus. Tomēr tos var izmantot, ja telpas ir standarta vai piemēro koeficientus, kas ļauj ņemt vērā katras konkrētās istabas esošos "nestandarta" nosacījumus (stūra istaba, izeja uz balkonu, logs uz visu sienu utt.). Ir daudz sarežģītāks aprēķins, izmantojot formulas. Bet būtībā tie ir vienādi koeficienti, kas tiek savākti tikai vienā formā.

Ir vēl viena metode. Tas nosaka faktisko zaudējumu. Īpaša ierīce - termiskais fokusētājs - nosaka reālos siltuma zudumus. Pamatojoties uz šiem datiem, viņi aprēķina, cik radiatoru ir vajadzīgi, lai tos kompensētu. Kas vēl ir labs par šo metodi, ir fakts, ka jūs varat redzēt tieši to, kur siltuma atstāj vissekmīgāko siltumtēlu attēlu. Tas var būt defekts darbā vai celtniecības materiālos, plaisa utt. Tajā pašā laikā jūs varat iztaisnot situāciju.

Radiatoru aprēķins ir atkarīgs no telpas siltuma zudumiem un sadaļas nominālā siltuma jaudas.

Sildīšanas radiatoru aprēķins pa platībām

Vieglākais veids. Aprēķiniet nepieciešamo siltuma daudzumu apkurei, pamatojoties uz telpas telpu, kurā tiks uzstādīti radiatori. Jūs zināt katras telpas platību, un siltuma nepieciešamību var noteikt ar SNiP ēku kodiem:

  • vidējai klimatiskajai joslai, kas paredzēta apkurei 1 m 2 no dzīvojamās telpas, nepieciešami 60-100 W;
  • platībām virs 60 o, ir nepieciešami 150-200W.

Pamatojoties uz šiem noteikumiem, jūs varat aprēķināt, cik daudz siltuma jūsu istaba būs nepieciešama. Ja dzīvoklis / māja atrodas vidējā klimatiskajā zonā, apkurei 16 m 2 platībā ir nepieciešama 1600 W siltuma (16 * 100 = 1600). Tā kā normas ir vidējas, un laika apstākļi neuztur pastāvību, mēs ticam, ka 100W ir vajadzīgs. Lai gan, ja jūs dzīvojat vidējā klimatiskajā joslā dienvidos un ziemas ir vieglas, skatiet 60W katra.

Sildīšanas radiatoru aprēķinus var veikt saskaņā ar SNiP normām

Enerģijas rezerves apkure ir nepieciešama, bet ne tik liela: ar vajadzīgās jaudas palielināšanu palielinās radiatoru skaits. Un jo vairāk radiatori, jo vairāk dzesēšanas sistēmas. Ja tiem, kas ir pieslēgti pie centrālās apkures, tas nav nekritisks, tad tiem, kam ir atsevišķa apkure vai plānošana, liels sistēmas apjoms nozīmē lielas (nevajadzīgas) izmaksas dzesēšanas šķidruma sildīšanai un lielāku sistēmas inerci (noteiktā temperatūra ir mazāk piesardzīga). Un rodas loģisks jautājums: "Kāpēc maksāt vairāk?"

Aprēķinot vajadzību pēc telpas siltuma, mēs varam uzzināt, cik daudz sadaļu ir nepieciešams. Katrs no sildītājiem var izstarot zināmu siltumu, kas norādīts pasē. Paņemiet nepieciešamo siltumu un sadaliet radiatoru jaudu. Rezultāts ir nepieciešamais sekciju skaits, lai kompensētu zaudējumus.

Aprēķiniet radiatora skaitu vienai un tai pašai telpai. Mēs noskaidrojām, ka nepieciešams 1600W. Ļaujiet jaudai vienu sadaļu 170W. Izrādās, 1600/170 = 9.411 gab. Jūs varat noorganizēt uz augšu vai uz leju pēc saviem ieskatiem. Jūs varat noapaļot uz mazāku, piemēram, virtuvē - ir pietiekami daudz papildu siltuma avotu, un lielāks ir labāks telpā ar balkonu, lielu logu vai stūra telpā.

Sistēma ir vienkārša, taču trūkumi ir acīmredzami: griestu augstums var būt atšķirīgs, netiek ņemts vērā sienu, logu, izolācijas materiāls un vairāki faktori. Tādējādi SNiP sildīšanas radiatoru sekciju skaits ir aptuvens. Precīziem rezultātiem nepieciešams veikt pielāgojumus.

Kā aprēķināt radiatora sekcijas pēc telpas tilpuma

Ar šo aprēķinu tiek ņemts vērā ne tikai platība, bet arī griestu augstums, jo jums ir nepieciešams sildīt visu telpā esošo gaisu. Tātad šī pieeja ir pamatota. Un šajā gadījumā tehnika ir līdzīga. Nosakiet telpas tilpumu, un pēc tam, ievērojot normas, noskaidrot, cik daudz siltuma nepieciešams, lai to sildītu:

  • paneļu mājā kubikmetru gaisa sildīšanai nepieciešams 41 W;
  • ķieģeļu mājā m 3 - 34 W.

Ir nepieciešams sildīt visu gaisa daudzumu telpā, jo ir daudz pareizāk skaitīt radiatorus pēc tilpuma

Mēs aprēķināsim visu par to pašu 16m 2 telpu un salīdzināsim rezultātus. Ļaujiet griestu augstums 2,7 m. Apjoms: 16 * 2.7 = 43.2m 3.

Tālāk mēs aprēķinām par iespējām panelī un ķieģeļu mājā:

  • Paneļu mājā. Nepieciešamais apkures siltums ir 43,2 m 3 * 41 V = 1771,2 W. Ja mēs ņemam visas tās pašas sekcijas ar 170W jaudu, mēs saņemam: 1771W / 170W = 10.418 gabali (11 gab.).
  • Ķieģeļu mājā. Siltumapgādei nepieciešams 43.2m 3 * 34W = 1468.8W. Mēs skaita radiatorus: 1468,8 W / 170 W = 8,64 gab. (9 gab.).

Kā redzat, atšķirība ir diezgan liela: 11 gabali un 9 gab. Turklāt, aprēķinot pa apgabaliem, tika iegūta vidējā vērtība (ja noapaļota tajā pašā virzienā) - 10 gab.

Rezultātu pielāgošana

Lai iegūtu precīzāku aprēķinu, ir jāņem vērā pēc iespējas vairāk faktoru, kas samazina vai palielina siltuma zudumus. Tieši no tā tiek izgatavotas sienas un cik labi tās ir izolētas, cik lieli ir logi, un kāda veida stiklojums ir uz tām, cik daudz sienas istabā noved pie ielas utt. Lai to izdarītu, ir koeficienti, pēc kuriem jums nepieciešams reizināt konstatētās siltuma zuduma vērtības telpā.

Radiatoru skaits ir atkarīgs no siltuma zuduma daudzuma

Windows veido siltuma zudumus no 15% līdz 35%. Konkrētais skaitlis ir atkarīgs no loga lieluma un no tā, cik labi tas ir izolēts. Tādēļ ir divi attiecīgie koeficienti:

  • loga platības attiecība pret grīdas platību:
    • 10% - 0,8
    • 20% - 0,9
    • 30% - 1,0
    • 40% - 1,1
    • 50% - 1,2
  • stiklojums:
    • trīs kameru stikla pakete vai argons dubultā stikla logā - 0,85
    • Parasts divkameru dubultstiklojums - 1,0
    • parasts dubultstikli - 1,27.

Sienas un jumts

Lai ņemtu vērā zaudējumus, svarīgi ir sienu materiāli, siltumizolācijas pakāpe, sienu skaits, kas vērstas uz ielu. Šeit ir šo faktoru faktori.

  • Ķieģeļu sienas ar biezumu no diviem ķieģeļiem tiek uzskatītas par normu - 1,0
  • nepietiekošs (nav) - 1,27
  • labi - 0,8

Ārējās sienas:

  • interjers - lossless, koeficients 1,0
  • viens - 1.1
  • divi - 1,2
  • trīs - 1.3

Siltuma zudumu daudzumu ietekmē sildīšana vai arī telpa nav uz augšu. Ja uz augšu (māju otrajā stāvā, citā dzīvoklī utt.) Ir apdzīvojams apsildāmā telpa, samazinājuma koeficients ir 0,7, ja apsildāmajā mansardā ir 0,9. Tiek uzskatīts, ka neapsildīts bēniņi neietekmē temperatūru un (koeficients 1,0).

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Ja aprēķins veikts uz apgabala, un griestu augstums ir nestandarta (par standartu ņem 2,7 m augstumu), tad tiek izmantots proporcionāls palielinājums / samazinājums, izmantojot koeficientu. To uzskata par vieglu. Šim nolūkam telpā esošo griestu reālais augstums ir sadalīts ar standarta 2,7 m. Iegūstiet vēlamo koeficientu.

Apsveriet, piemēram: ļaujiet griestu augstumu 3,0 m. Mēs iegūstam: 3,0 m / 2,7 m = 1,1. Tāpēc radiatora sekciju skaits, ko aprēķina pēc platības šai telpai, jāreizina ar 1.1.

Visas šīs normas un koeficienti tika noteikti dzīvokļiem. Lai ņemtu vērā siltuma zudumus mājās caur jumtu un pagrabstāvu / pamatni, jums jāpalielina rezultāts par 50%, ti, privātmājas koeficients ir 1,5.

Klimatiskie faktori

Varat veikt pielāgojumus atkarībā no vidējās temperatūras ziemā:

  • -10 о С un augstāk - 0,7
  • -15 о С - 0.9
  • -20 о С - 1.1
  • -25 о С - 1,3
  • -30 о С - 1,5

Ņemot visus nepieciešamos pielāgojumus, iegūstiet precīzāku radiatoru skaitu, kas nepieciešamas telpas apsildīšanai, ņemot vērā telpu parametrus. Taču ne visi kritēriji ietekmē siltuma starojuma spēku. Ir tehniskas detaļas, kuras tiks aplūkotas turpmāk.

Dažādu radiatoru tipu aprēķins

Ja jūs gatavojaties uzstādīt standarta izmēra šķērsgriezuma radiatorus (ar aksiālo attālumu 50 cm augstumā) un jau izvēlējušies nepieciešamo materiālu, modeli un izmēru, nebūtu grūti aprēķināt to skaitu. Lielākā daļa cienījamu uzņēmumu, kas piegādā labas apkures iekārtas, ir tehniski dati par visām izmaiņām, starp kurām ir arī siltuma jauda. Ja nav jaudas, bet ir norādīts dzesēšanas šķidruma plūsmas ātrums, tad pāreja uz elektroenerģiju ir vienkārša: dzesēšanas šķidruma caurplūdums ar 1 l / min ir aptuveni vienāds ar jaudu 1 kW (1000 W).

Radiatora aksiālo attālumu nosaka augstums starp atveres centriem dzesēšanas šķidruma pievadīšanai / izvadīšanai.

Lai daudzās vietnēs klientiem atvieglotu dzīvi, viņi instalē speciāli izstrādātu kalkulatoru programmu. Tad apkures radiatoru sekciju aprēķins tiek samazināts, iekļaujot datus jūsu telpā attiecīgajos laukos. Un pie produkcijas jums ir gatavs rezultāts: šī modeļa sadaļu skaits gabalos.

Aksiālais attālums tiek noteikts starp dzesēšanas šķidruma atveru centriem

Bet, ja jūs vienkārši mēģināt izdomāt iespējamās iespējas, tad ir vērts apsvērt, ka tāda paša izmēra radiatori no dažādiem materiāliem ir atšķirīgi siltuma jauda. Metode, kā aprēķināt bimetāla radiatoru daļu skaitu alumīnija, tērauda vai čuguna aprēķināšanai, nav atšķirīga. Tikai vienas sadaļas siltuma jauda var būt atšķirīga.

Lai to aprēķinātu, ir vieglāk, ir vidējie dati, ar kuriem var pārvietoties. Vienai radiatora sekcijai, kuras asi ir 50 cm, tiek ņemtas šādas jaudas vērtības:

  • alumīnijs - 190W
  • bimetāla - 185W
  • čuguns - 145W.

Ja jūs vienkārši domājat, kuru materiālu izvēlēties, varat izmantot šos datus. Skaidrības labad mēs piedāvājam visvienkāršāko bimetāla radiatoru sekciju aprēķinu, kurā tiek ņemta vērā tikai telpas telpa.

Nosakot sildītāju skaitu no standarta izmēra bimetāla (centra attālums 50cm), tiek pieņemts, ka vienā sadaļā var uzsildīt 1,8 m 2 platību. Tad 16 m 2 telpās jums nepieciešams: 16 m 2 / 1.8 m 2 = 8.88 gab. Mēs aprindām - mums vajag 9 sadaļas.

Tāpat mēs domājam par čuguna vai tērauda barteru. Nepieciešamas tikai normas:

  • bimetāla radiators - 1,8 m 2
  • alumīnijs - 1,9-2,0 m 2
  • čuguns - 1,4-1,5 m 2.

Šie dati attiecas uz sadaļām, kuru savstarpējais attālums ir 50 cm. Mūsdienās modeļi tiek pārdoti no ļoti atšķirīgiem augstumiem: no 60 cm līdz 20 cm un pat zemāk. Modeļi 20cm un zemāk tiek saukti par apmalēm. Protams, to jauda atšķiras no noteiktā standarta, un, ja jūs plānojat izmantot "nestandarta", jums būs jāveic korekcijas. Vai arī meklējiet savus pases datus vai izlasiet to pats. Mēs pieņemam, ka siltuma ierīces siltuma izlaide tieši ir atkarīga no tās platības. Augstuma samazināšanās dēļ ierīces platība samazinās, un līdz ar to jauda samazinās proporcionāli. Tas ir, jums ir jāatrod izvēlētā radiatora augstuma attiecība ar standartu, un pēc tam izmantojiet šo koeficientu, lai koriģētu rezultātu.

Čuguna radiatoru aprēķins. Var aprēķināt pēc telpas vai tilpuma

Skaidrības labad mēs aprēķinām alumīnija radiatorus uz platību. Numurs ir vienāds: 16m 2. Mēs ieskauj standarta izmēra sekciju skaitu: 16m 2 / 2m 2 = 8 gab. Bet mēs vēlamies izmantot mazizmēra sekcijas 40 cm augstumā. Mēs atrodamies izvēlētā lieluma radiatoru attiecība pret standartu: 50cm / 40cm = 1.25. Un tagad mēs koriģējam summu: 8 gab * 1.25 = 10 gab.

Korekcija atkarībā no apkures sistēmas režīma

Pasu datu izgatavotāji norāda maksimālo radiatoru spēku: ar augstas temperatūras lietošanas režīmu - dzesēšanas šķidruma temperatūra 90 o C plūsmā, atgriešanās laikā - 70 o C (apzīmē 90/70) telpai jābūt 20 o C. Taču šajā režīmā modernās sistēmas apkure ir ļoti reta. Parasti vidējas jaudas režīms ir 75/65/20 vai pat zemas temperatūras ar parametriem 55/45/20. Ir skaidrs, ka aprēķins ir nepieciešams, lai labotu.

Lai ņemtu vērā sistēmas darbības režīmu, ir jānosaka sistēmas temperatūras galva. Temperatūras spiediens ir starpība starp gaisa temperatūru un sildīšanas ierīcēm. Šajā gadījumā sildītāju temperatūra tiek aprēķināta kā aritmētiskais vidējais lielums starp plūsmas un plūsmas vērtību.

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Lai padarītu to skaidrāku, mēs veiksim čuguna radiatoru aprēķinus diviem režīmiem: augsta temperatūra un zemas temperatūras standarta izmēra sekcijas (50 cm). Numurs ir vienāds: 16m 2. Augstas temperatūras režīmā, 90/70/20, viena čuguna daļa paaugstina 1,5 m 2. Tā kā mums ir nepieciešams 16m 2 / 1.5m 2 = 10,6 gab. Noapaļot uz augšu - 11 gab. Sistēma plāno izmantot zemas temperatūras režīmu 55/45/20. Tagad mēs atrodam temperatūras spiedienu katrai sistēmai:

  • augsta temperatūra 90/70 / 20- (90 + 70) / 2-20 = 60 o C;
  • zemas temperatūras 55/45/20 - (55 + 45) / 2-20 = 30 o C.

Tas nozīmē, ka, ja tiek izmantots zemas temperatūras darbības režīms, telpā ar siltumu ir nepieciešamas divas reizes vairāk sekciju. Mūsu piemērs ir nepieciešams, lai 16m 2 telpā būtu nepieciešamas 22 čuguna radiatoru daļas. Izrādās liels akumulators. Tas, starp citu, ir viens no iemesliem, kāpēc šāda veida sildītājs nav ieteicams izmantot tīklos ar zemu temperatūru.

Ar šo aprēķinu jūs varat ņemt vērā vēlamo gaisa temperatūru. Ja vēlaties, lai telpa nebūtu 20 ° C, piemēram, 25 ° C, vienkārši aprēķiniet siltuma spiedienu šim gadījumam un atrodiet vajadzīgo koeficientu. Darīsim aprēķinus tiem pašiem čuguna radiatoriem: parametri būs 90/70/25. Mēs uzskatām temperatūras spiedienu šim gadījumam (90 + 70) / 2-25 = 55 o C. Tagad mēs atrodam attiecību 60 o C / 55 o C = 1,1. Lai nodrošinātu temperatūru 25 ° C, jums vajag 11 vnt. * 1,1 = 12,1 gab.

Radiatora jaudas atkarība no savienojuma un atrašanās vietas

Papildus visiem iepriekš aprakstītajiem parametriem radiatora siltuma jauda mainās atkarībā no savienojuma veida. Labāko uzskata par diagonālo savienojumu ar plūsmu no augšas, tādā gadījumā nav siltuma zudumu. Vislielākie zudumi vērojami ar sānu savienojumu - 22%. Visi pārējie efektivitātes vidējie rādītāji. Aptuvenās vērtības zaudējumiem procentos parādīts attēlā.

Siltuma zudumi radiatoros atkarībā no savienojuma

Radiatora faktiskā jauda tiek samazināta arī bloķējošu elementu klātbūtnē. Piemēram, ja sliekšņa karājas no augšas, siltuma jauda samazinās par 7-8%, ja tas pilnībā nenosedz radiatoru, tad zaudējumi ir 3-5%. Uzstādot acu ekrānu, kas nesasniedz grīdu, zaudējumi ir aptuveni tādi paši kā paliktņa pārsega gadījumā: 7-8%. Bet, ja ekrāns pilnībā aptver visu sildītāju, tā siltuma padeve tiek samazināta par 20-25%.

Siltuma daudzums ir atkarīgs no uzstādīšanas

Siltuma daudzums ir atkarīgs no uzstādīšanas vietas.

Radiatoru daudzuma noteikšana monotube sistēmām

Ir vēl viens ļoti svarīgs jautājums: viss iepriekš minētais attiecas uz divu cauruļu apkures sistēmu, kad dzesēšanas šķidrums ar tādu pašu temperatūru nonāk pie katra radiatora ieejas. Viena cauruļvadu sistēma tiek uzskatīta par daudz sarežģītāku: tur, ūdens kļūst arvien vairāk aukstāks katram nākamajam sildītājam. Un, ja jūs vēlaties aprēķināt radiatoru skaitu viencaurules sistēmai, katru reizi jāpārrēķina temperatūra, un tas ir grūti un laikietilpīgi. Kāda ir izeja? Viena no iespējām ir noteikt radiatoru spēku kā divu cauruļu sistēmai, un pēc tam, proporcionāli siltuma izlaides kritumam, pievienojiet sekcijas, lai palielinātu akumulatora kopējo siltumu.

Monotube sistēmā ūdens katram radiatorim kļūst arvien vairāk aukstāks.

Paskaidrosim ar piemēru. Diagramma parāda viencaurules apkures sistēmu ar sešiem radiatoriem. Bateriju skaits ir noteikts divu cauruļu vadiem. Tagad jums ir jāveic korekcija. Pirmajam sildītājam viss paliek nemainīgs. Otrajā vietā jau ir dzesēšanas šķidrums ar zemāku temperatūru. Mēs nosaka% jaudas kritumu un palielina sekciju skaitu ar atbilstošo vērtību. Attēls ir šāds: 15kW-3kW = 12kW. Atrodiet procentuālo attiecību: temperatūras kritums ir 20%. Tādējādi, lai kompensētu, mēs palielinām radiatoru skaitu: ja jums vajag 8 gab, tas būs par 20% - 9 vai 10 gab. Tas ir tas, kur zināšanas par istabu ir noderīgas: ja tā ir guļamistaba vai bērnudārzs, apaļ tās uz augšu, ja tā ir dzīvojamā istaba vai cita līdzīga telpa, apaļo to līdz mazākajam. Ņem vērā atrašanās vietu pasaules malās: ziemeļu kārta līdz lielai, dienvidos - uz mazāku.

Monotube sistēmās ir nepieciešams pievienot sekcijas radiatoros, kas atrodas tālāk gar filiāli

Šī metode acīmredzami nav ideāla: galu galā izrādās, ka pēdējam akumulatoram filiālē vajadzētu būt vienkārši milzīgu izmēru: pēc sistēmas principa, dzesēšanas šķidrums ar īpašu siltumietilpību, kas vienāda ar tās jaudu, tiek piegādāts līdz tā ievadam, un praktiski nav iespējams pilnībā noņemt 100%. Tāpēc, nosakot katla jaudu monotube sistēmām, parasti ir nepieciešams veikt kādu rezervi, uzstādīt slēgierīces un savienot radiatorus caur apvadi, lai varētu regulēt siltuma pārnesi, tādējādi kompensējot dzesēšanas šķidruma temperatūras kritumu. No visa šī ir viena lieta: ir jāpalielina viencauruļu sistēmas un / vai radiatoru izmēru skaits, un, palielinoties attālumam no filiāles sākuma, tiks uzstādītas vairāk un vairāk sekcijas.

Rezultāti

Radiatoru sekciju aptuvenais aprēķins ir vienkāršs un ātrs. Bet skaidrojums, kas atkarīgs no visām telpu īpašībām, lieluma, savienojuma veida un atrašanās vietas, prasa uzmanību un laiku. Bet jūs varat precīzi noteikt sildītāju skaitu, lai ziemā radītu komfortablu atmosfēru.

Piemērs alumīnija radiatoru sekciju aprēķinam uz kvadrātmetru

Nepietiek tikai zināt, ka alumīnija baterijām ir augsts siltuma pārneses līmenis.

Pirms to uzstādīšanas ir obligāti jāaprēķina, kāds ir to skaits katrā atsevišķā telpā.

Vienkārši zinot, cik daudz alumīnija radiatoru jums nepieciešams uz 1 m2, jūs varat droši iegādāties nepieciešamo sekciju skaitu.

Alumīnija radiatoru sekciju aprēķins uz kvadrātmetru

Parasti ražotāji iepriekš ir aprēķinājuši alumīnija bateriju jaudas standartus, kas ir atkarīgi no tādiem parametriem kā griestu augstums un telpas platība. Tātad tiek uzskatīts, ka, lai sildītu 1 m2 telpas ar griestiem līdz 3 m augstumā, būs nepieciešama 100 vatu siltuma jauda.

Šie skaitļi ir aptuveni, jo šajā gadījumā alumīnija sildīšanas radiatoru aprēķināšana pēc platības šajā gadījumā nenodrošina iespējamos siltuma zudumus telpā vai augstāka vai zemāka griesti. Tie ir vispārpieņemti būvnormatīvi, kurus izgatavotāji norāda ražojumu tehniskajā pasē.

Papildus tiem:

  1. Liela nozīme ir viena radiatora finiera siltuma jaudas parametram. Alumīnija sildītājs ir 180-190 vati.
  2. Jāņem vērā arī pārvadātāja temperatūra. To var atpazīt kontroles siltuma vadībā, ja apkure ir centralizēta vai patstāvīgi mēra autonomā sistēmā. Alumīnija baterijām indikators ir 100-130 grādi. Sadalot temperatūru ar radiatora siltuma izlaidi, izrādās, ka apkurei 1 m2 tas aizņems 0,55 sekcijas.
  3. Tādā gadījumā, ja griestu augstumam ir "aizauguši" klasiskie standarti, tad ir nepieciešams piemērot īpašu koeficientu:
    • ja griesti ir 3 m, tad parametri tiek reizināti ar 1,05;
    • 3,5 m augstumā tas ir 1,1;
    • 4 m, tas ir 1,15;
    • sienas augstums 4,5 m - koeficients ir 1,2.
  4. Varat izmantot ražotāju iesniegto tabulu saviem produktiem.


Cik daudz alumīnija radiatora daļu Jums vajag?

Alumīnija radiatora sekciju skaits tiek aprēķināts tādā formā, kāds ir piemērots jebkura tipa sildītājiem:

Šajā gadījumā:

  • S ir telpas telpa, kurā nepieciešama akumulatora uzstādīšana;
  • k ir indikatora korekcijas koeficients 100 W / m2 atkarībā no griestu augstuma;
  • P - viena radiatora elementa jauda.

Aprēķinot alumīnija radiatoru sekciju skaitu, izrādās, ka alumīnija radiatoram ar jaudu 0,138 kW katrā sekcijā vajadzēs 14 sekcijas 20 m2 platībā ar griestu augstumu 2,7 m.

Q = 20 x 100 / 0.138 = 14.49

Šajā piemērā koeficients nav piemērojams, jo griestu augstums ir mazāks par 3 m. Taču pat tādas alumīnija radiatoru daļas nebūs pareizas, jo nav ņemti vērā iespējamie siltuma zudumi no telpas. Jāpatur prātā, ka atkarībā no loga skaita telpā, neatkarīgi no tā, vai tā ir leņķiska un vai tajā ir balkoni: tas viss norāda uz siltuma zudumu avotu skaitu.

Aprēķinot alumīnija radiatorus telpas telpā, siltuma zuduma procentuālā attiecība jāņem vērā formulā atkarībā no tā, kur tie ir uzstādīti:

  • ja tie ir nostiprināti zem palodzes, tad zaudējumi būs līdz 4%;
  • uzstādīšana nišā uzreiz palielina šo skaitli līdz 7%;
  • ja jūs pārklājat alumīnija radiatoru skaistumam vienā pusē ar ekrānu, tad zaudējumi būs 7-8%;
  • pilnībā aizveries ekrāns, tas zaudēs līdz pat 25%, kas padara to galvenokārt neizdevīgu.

Šie nav visi rādītāji, kas būtu jāņem vērā, uzstādot alumīnija baterijas.

Aprēķina piemērs

Ja jūs skaitot, cik daudz alumīnija radiatora daļu jums nepieciešama telpai ar platību 20 m2 ar ātrumu 100 W / m2, tad jums ir nepieciešams arī veikt siltuma zuduma korekcijas koeficientus:

  • katrs logs palielina rādītāju par 0,2 kW;
  • durvis "maksā" 0,1 kW.

Ja tiek pieņemts, ka radiators tiks novietots zem paliktņa, tad korekcijas koeficients būs 1,04, un pati formula izskatīsies šādi:

Q = (20 x 100 + 0,2 + 0,1) x 1,3 x 1,04 / 72 = 37,56

Kur

  • pirmais indikators ir telpas platība;
  • otrais ir standarta vatu skaits uz m2;
  • trešajā un ceturtajā norāda, ka telpai ir viens logs un viena durvīm;
  • nākamais rādītājs ir alumīnija radiatora siltuma pārnesumskaitlis (kW);
  • Sestā ir korekcijas koeficients attiecībā uz akumulatora atrašanās vietu.

Viss jāsadala viena sildītāja finiera siltuma padeves ātrumā. To var noteikt no ražotāja tabulas, kur ir norādīti pārvadātāja apkures koeficienti attiecībā pret ierīces jaudu. Vidējā vērtība vienai malai ir 180 W, un korekcija ir 0.4. Tādējādi, reizinot šos skaitļus, izrādās, ka 72 vati dod vienu sadaļu, kad ūdens tiek uzkarsēts līdz +60 grādiem.

Tā kā noapaļošana tiek veikta lielā veidā, maksimālais alumīnija radiatora sekciju skaits konkrētajā telpā būs 38 malas. Lai uzlabotu struktūras konstrukciju, tas jāsadala 2 daļās ar 19 malām katrā.

Sējuma aprēķins

Ja veicat šādus aprēķinus, jums būs jāatsaucas uz standartiem, kas noteikti SNiP. Tie ņem vērā ne tikai radiatora rādītājus, bet arī materiālu, no kura ēka ir uzbūvēta.

Piemēram, ķieģeļu namam standarts 1 m2 būtu 34 W, bet paneļu ēkām - 41 W. Lai aprēķinātu akumulatora sekciju skaitu pēc telpas tilpuma, jums vajadzētu: reizināt telpas tilpumu ar siltuma patēriņa normām un dalīt ar siltuma jaudu 1 sekcijā.

Piemēram:

  1. Lai aprēķinātu telpu ar platību 16 m2 apjomu, reiziniet šo skaitli ar griestu augstumu, piemēram, 3 m (16x3 = 43 m3).
  2. Siltummezgls ķieģeļu ēkai = 34 W, lai noskaidrotu, kāds daudzums ir vajadzīgs šai telpai, 48 m3 x 34 W (paneļu māja ar 41 W) = 1632 W.
  3. Nosaka, cik daudz sekciju nepieciešams, ja radiatora jauda, ​​piemēram, ir 140 vati. Šim nolūkam 1632 W / 140 W = 11,66.

Šim skaitlim noapaļojot, rezultāts ir tāds, ka telpas ar tilpumu 48 m3 vajadzīgs 12 sekciju alumīnija radiators.

Siltuma jauda 1 sekcijā

Parasti ražotāji siltuma tehniskajās īpašībās norāda vidējo siltuma pārnesi. Tātad alumīnija sildītājiem tas ir 1,9-2,0 m2. Lai aprēķinātu nepieciešamo sekciju skaitu, jums ir nepieciešams sadalīt telpas platību ar šo faktoru.

Piemēram, tajā pašā telpā ar platību 16 m2 būs nepieciešamas 8 iedaļas, jo 16/2 = 8.

Šie aprēķini ir aptuveni un tos nevar izmantot, neņemot vērā siltuma zudumus un faktiskos akumulatora izvietojuma apstākļus, jo pēc konstrukcijas montāžas jūs varat iegūt aukstā telpu.

Lai iegūtu visprecīzākos rādītājus, ir nepieciešams aprēķināt siltuma daudzumu, kas nepieciešams, lai sildītu noteiktu dzīves telpu. Tam būs jāņem vērā daudzi korekcijas koeficienti. Šī pieeja ir īpaši svarīga, ja ir nepieciešams aprēķināt alumīnija radiatorus privātmājai.

Lai to panāktu, ir šāda formula:

CT = 100 W / m2 x S x K1 x K2 x K3 x K4 x K5 x K6 x K7

  1. CT ir siltuma daudzums, kas nepieciešams šim telpam.
  2. S - platība.
  3. K1 - stikla loga koeficienta apzīmējums. Tas ir 1,27 standarta dubultstikliem, 1,0 dubultstikliem un 0,85 - trīskāršiem stiklojumiem.
  4. K2 - ir sienu izolācijas līmeņa koeficients. Attiecībā uz nerūsējošo paneļu tas ir = 1,27, ķieģeļu sienām ar vienu slāni slānī = 1,0, un divās ķieģeļās = 0,85.
  5. K3 ir loga un grīdas aizņemto platību attiecība. Kad starp:
    • 50% - koeficients ir 1,2;
    • 40% - 1,1;
    • 30% - 1,0;
    • 20% - 0,9;
    • 10% - 0,8.
  6. K4 ir koeficients, kas ņem vērā gaisa temperatūru saskaņā ar SNiP aukstākajās gada dienās:
    • +35 = 1.5;
    • +25 = 1,2;
    • +20 = 1,1;
    • +15 = 0.9;
    • +10 = 0,7.
  7. K5 norāda ārējo sienu klātbūtnes regulēšanu. Piemēram:
    • kad tas ir viens, indikators ir 1,1;
    • divas ārējās sienas - 1,2;
    • 3 sienas - 1,3;
    • visas četras sienas - 1.4.
  8. K6 ņem vērā vietas pieejamību virs telpas, kurā tiek veikti aprēķini. Piedaloties:
    • neapsildīts bēniņi - koeficients 1,0;
    • bēniņi ar apkuri - 0,9;
    • dzīvojamā istaba - 0.8.
  9. K7 ir koeficients, kas norāda griestu augstumu telpā:
    • 2,5 m = 1,0;
    • 3,0 m = 1,05;
    • 3,5 m = 1,1;
    • 4,0 m = 1,15;
    • 4,5 m = 1,2.

Ja jūs izmantojat šo formulu, jūs varat paredzēt un ņemt vērā gandrīz visas nianses, kas var ietekmēt dzīves telpas apsildīšanu. Aprēķinot uz to, jūs varat būt pārliecināti, ka rezultāts norāda uz optimālu alumīnija radiatora sekciju skaitu konkrētā telpā.

Lai kāds būtu aprēķina princips, ir svarīgi to padarīt par kopumu, jo pareizi izvēlētie baterijas ļauj ne tikai baudīt siltumu, bet arī būtiski ietaupīt enerģijas izmaksas. Pēdējais ir īpaši svarīgs apstākļos, kad pastāvīgi pieaug tarifi.

Radiatoru sekciju aprēķins.

Ja jums ir nepieciešams precīzi aprēķināt radiatora sekcijas, tad to var izdarīt telpas platībā. Šis aprēķins ir piemērots telpām ar zemu griestiem ne vairāk kā 2,6 metri. Lai to sildītu, tas patērē 100 W siltuma jaudu uz 1 m 2. Pamatojoties uz to, nav grūti aprēķināt, cik daudz siltuma vajadzīgs visā telpā. Tas nozīmē, ka platība jāreizina ar kvadrātmetru skaitu.

Turklāt esošais rezultāts ir jāsadala ar vienas sadaļas siltuma pārneses vērtību, iegūto vērtību vienkārši noapaļojot uz augšu. Ja tā ir siltā istabā, piemēram, virtuvē, tad rezultātu var noapaļot uz leju.

Aprēķinot radiatoru skaitu, jāņem vērā iespējamie siltuma zudumi, ņemot vērā noteiktas situācijas un mājokļa stāvokli. Piemēram, ja dzīvokļa istaba ir leņķa un ar balkonu vai lodžiju, tad tā siltums tiek zaudēts daudz ātrāk nekā dzīvokļu istabas ar citu atrašanās vietu. Šādām telpām aprēķini par siltumenerģiju jāpalielina vismaz par 20%. Ja jūs plānojat uzstādīt sildīšanas radiatorus nišā vai paslēpiet tos aiz ekrāna, tad siltuma aprēķins palielinās par 15-20%.

Lai aprēķinātu radiatorus, varat izmantot kalkulatoru radiatoru aprēķināšanai.

Aprēķini, ņemot vērā telpas tilpumu.

Radiatoru sekciju aprēķins būs precīzāks, ja tos aprēķinās, pamatojoties uz griestu augstumu, tas ir, pamatojoties uz telpas tilpumu. Šajā gadījumā aprēķinu princips ir līdzīgs iepriekšējai versijai.

Vispirms jums jāaprēķina kopējais siltuma pieprasījums, un tikai pēc tam aprēķiniet radiatoru sadaļu skaitu. Kad radiators ir paslēpts aiz ekrāna, nepieciešamība pēc telpas siltumenerģijai palielinās par vismaz 15-20%. Ja mēs ņemam vērā SNIP ieteikumus, tad, lai sildītu vienu kubikmetru dzīvojamās istabas standarta paneļu mājā, ir nepieciešams tērēt 41 W termiskās jaudas.

Lai aprēķinātu, mēs ņemam telpas platību un reizinām to ar griestu augstumu, iegūstam kopējo tilpumu, mums tas ir jāreizina ar standarta vērtību, tas ir, 41. Ja dzīvoklī ir labi moderni stikla pakešu logi, no sienām ir izolācija no putām, tad siltumenerģijai būs nepieciešama zemāka vērtība - 34 W m 3 Piemēram, ja istaba ar platību ir 20 kvadrātmetri. metros ir griesti ar augstumu 3 metri, tad telpas tilpums būs tikai 60 m 3, tas ir, 20x3. Aprēķinot telpas siltuma jaudu, mēs iegūstam 2460 W, tas ir 60X41.

Siltuma piegādes aprēķinu tabula.

Mēs pārietam uz aprēķinu: Lai aprēķinātu nepieciešamo radiatoru daudzumu, iegūtie dati ir jāsadala viena sakausējuma nodalījumā, ko norāda ražotājs. Piemēram, ja mēs ņemam, piemēram: vienā sadaļā ir 170 W, mēs ņemam telpas platību, par kuru mums ir nepieciešams 2460 W un sadalīt to par 170 W, mēs saņemam 14,47. Pēc tam noapaļojiet un saņemiet 15 apsildes sekcijas vienai telpai. Tomēr jāņem vērā fakts, ka daudzi ražotāji apzināti norāda pārmērīgu siltuma pārneses efektivitāti to sekcijās, pamatojoties uz to, ka bateriju temperatūra būs maksimāla. Reālajā dzīvē šādas prasības nav izpildītas, un dažkārt cauruļvadi ir nedaudz silti, nevis karsti. Tāpēc mums ir jādodas no minimālā siltuma pārsūtīšanas uz vienu sadaļu, kas norādīta preču pasē. Tādēļ iegūtie aprēķini būs precīzāki.

Kā iegūt visprecīzāko aprēķinu.

Radiatoru sekciju aprēķins ar maksimālo precizitāti ir diezgan grūti iegūt, jo ne visi dzīvokļi tiek uzskatīti par standartiem. Un it īpaši privātām ēkām. Tāpēc daudziem īpašniekiem ir jautājums: kā aprēķināt radiatoru sekcijas atsevišķiem ekspluatācijas apstākļiem? Šajā gadījumā tiek ņemts vērā griestu augstums, logu izmērs un skaits, sienu izolācija un citi parametri. Saskaņā ar šo aprēķina metodi ir nepieciešams izmantot veselu koeficientu sarakstu, kas ņems vērā konkrētas telpas īpašības, jo tie var ietekmēt spēju atbrīvot vai uzglabāt siltumenerģiju.

Šeit ir formula apkures radiatoru sekciju aprēķināšanai: CT = 100 W / kv.m. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7, indikators КТ ir siltuma daudzums, kas nepieciešams atsevišķai telpai.

1. kur P ir telpas kopējā platība, kas norādīta kvadrātmetros;

2. K1 ir koeficients, kas ņem vērā loga atvērumu stiklojumu: ja logs ir ar parasto dubultstikli, indikators ir 1,27;

  • Ja logs ar dubultstiklējumu - 1,0;
  • Ja logs ar trīskāršu stiklojumu - 0,85.

3. K2 - sienu siltumizolācijas koeficients:

  • Ļoti zema siltumizolācijas pakāpe - 1,27;
  • Lieliska siltumizolācija (divu ķieģeļu vai izolācijas sienu sienas) - 1,0;
  • Augsta siltumizolācijas pakāpe - 0,85.

4. K3 - loga un grīdas platības attiecība telpā:

5. K4 ir koeficients, kas ļauj ņemt vērā vidējo gaisa temperatūru aukstākajā laikā:

  • -35 grādiem - 1,5;
  • -25 grādiem - 1,3;
  • -20 grādiem - 1,1;
  • -15 grādiem - 0,9;
  • -10 grādiem - 0,7.

6. K5 - koriģē siltuma nepieciešamību, ņemot vērā ārējo sienu skaitu:

7. K6 - ņem vērā telpas tipu, kas norādīts augstāk:

  • Ļoti auksts bēniņi - 1,0;
  • Bēniņi ar apkuri - 0,9;
  • Apsildāms numurs - 0.8

8. K7 - koeficients, kas ņem vērā griestu augstumu:

Sildīšanas radiatoru sadaļu aprēķinā tiek ņemtas vērā visas telpas nianses un dzīvokļa atrašanās vieta, tādēļ precīzi nosaka telpiskās vajadzības siltumenerģijā. Iegūtais rezultāts ir jāsadala ar siltuma pārneses vērtību no vienas sadaļas, gala rezultāts ir noapaļots. Ir daži ražotāji, kas piedāvā izmantot vienkāršāku aprēķina metodi. Viņu mājas lapas sniedz precīzu aprēķinu kalkulatoru. Lai strādātu ar šo programmu, lietotājs laukos ievada nepieciešamās vērtības un iegūst gatavo rezultātu. Turklāt viņš var izmantot īpašu programmatūru.

Radiatora sekciju skaita aprēķins

Gatavojoties liela remonta stadijai un jaunas mājas būvniecības plānošanas procesam, kļūst nepieciešams aprēķināt apkures radiatora sekciju skaitu. Šādu aprēķinu rezultāti ļauj noskaidrot bateriju skaitu, kas būtu pietiekams, lai nodrošinātu pietiekami siltuma daudzumu dzīvoklī vai mājā pat aukstākajā laikā.

Radiatora sekciju skaita aprēķins

Aprēķinu kārtība var mainīties atkarībā no daudziem faktoriem. Iepazīstieties ar ātrās aprēķināšanas norādījumiem tipiskām situācijām, nestandarta telpu aprēķiniem, kā arī vispilnīgāko un precīzāko aprēķinu veikšanas kārtību, ņemot vērā visas iespējamās būtiskās telpas īpašības.

Radiatora sekciju skaita aprēķins

Ieteikumi aprēķiniem pirms darba uzsākšanas

Lai patstāvīgi aprēķinātu vajadzīgo apkures akumulatora sekciju skaitu, jums jāzina šādi parametri:

  • telpas, uz kuru attiecas aprēķins, izmēri;

Kā izmērīt telpas

Radiatoru CONDOR sekciju aprēķins

Siltuma pārneses rādītāji, akumulatora forma un tā izgatavošanas materiāls - šie skaitļi netiek ņemti vērā aprēķinos.

Tas ir svarīgi! Nekavējoties veiciet aprēķinu visai mājai vai dzīvoklim. Pavadiet nedaudz vairāk laika un veiciet aprēķinus katrai telpai atsevišķi. Tas ir vienīgais veids, kā iegūt visticamāko informāciju. Aprēķinot akumulatora sekciju skaitu, lai apsildītu stūra telpu līdz gala rezultātam, jums jāpievieno 20%. To pašu krājumu vajadzētu izmest no augšas, ja apkures operācijā ir pārtraukumi, vai tā efektivitāte nav pietiekama augstas kvalitātes apkurei.

Radiatoru standarta aprēķins

Sildīšanas radiatoru aprēķins

Mēs sākam apmācību, apsverot visbiežāk izmantoto aprēķina metodi. Diez vai var uzskatīt par visprecīzāko, bet, ņemot vērā tās īstenošanas vienkāršību, tas noteikti uzņemas vadību.

Radiatoru standarta aprēķins

Saskaņā ar šo "universālo" metodi apkures 1 m2 telpas platībai ir nepieciešama 100 W baterijas jauda. Šajā gadījumā aprēķini ir ierobežoti ar vienu vienkāršu formulu:

K = S / U * 100

  • K - nepieciešamais akumulatoru sekciju skaits attiecīgās telpas apsildīšanai;
  • S ir šīs telpas platība;
  • U ir vienas radiatora daļas jauda.

Formula radiatora sekciju skaita aprēķināšanai

Piemēram, apsveriet nepieciešamās akumulatora sekcijas skaita aprēķināšanas procedūru telpai ar izmēriem 4x3,5 m. Šīs telpas platība ir 14 m2. Ražotājs apgalvo, ka katra akumulatora daļa, ko tā ražo, ražo 160 vati no jaudas.

Nosakot vērtības iepriekšminētajā formulā, un mēs noskaidrojām, ka, lai sildītu mūsu istabu, mums vajadzīgi 8,75 radiatora sekcijas. Mēs, protams, apņemamies lielā veidā, t.i. līdz 9. Ja istaba ir stūra, pievienojiet 20% robežu, noapaļojiet to vēlreiz un iegūstiet 11 sadaļas. Ja ir problēmas ar apkures sistēmas darbību, pievienojiet vēl 20% no sākotnēji aprēķinātās vērtības. Tas izrādīsies aptuveni 2. Tas nozīmē, ka kopumā 14 metru stūra istabas apkurei apkures sistēmas nepastāvīgās darbības apstākļos ir nepieciešamas 13 akumulatora daļas.

Alumīnija radiatoru aprēķins

Aptuvenais aprēķins standarta telpām

Ļoti vienkārša aprēķina iespēja. Tas ir balstīts uz faktu, ka lielapjoma sildāmo bateriju izmērs ir gandrīz vienāds. Ja telpas augstums ir 250 cm (standarta vērtība lielākajai daļai dzīvojamo telpu), tad viena radiatora daļa var sildīt 1,8 m2 telpas.

Istabas platība ir 14 m2. Lai aprēķinātu, tas ir pietiekami, lai sadalītu laukuma vērtību ar iepriekšminēto 1,8 m2. Rezultāts ir 7.8. Noapaļot līdz 8

Tādējādi, lai sasildītu 14 metru istabu ar 2,5 metru griestiem, jums ir jāpērk akumulators 8 sekcijām.

Tas ir svarīgi! Nelietojiet šo metodi, aprēķinot mazjaudas bloku (līdz 60 W). Kļūda būs pārāk liela.

Siltumizolatoru izvēle siltuma jaudai

Nestandarta telpu aprēķins

Šī aprēķina opcija ir piemērota nestandarta telpām ar pārāk zemu vai pārāk augstu griestu līmeni. Aprēķina pamats ir apgalvojums, ka, lai sasildītu 1 m3 dzīvojamās platības, jums ir nepieciešams aptuveni 41 W baterijas jauda. Tas nozīmē, ka aprēķini tiek veikti, izmantojot vienotu formulu, kura ir šāda:

A = Bx 41,

  • Un - nepieciešamais apkures akumulatora sekciju skaits;
  • B ir telpas tilpums. To aprēķina kā produkta garuma telpā tā platumu un augstumu.

Piemēram, uzskata, ka istaba ir 4 m garā, 3,5 m plata un 3 m augsta, tās tilpums būs 42 m3.

Kopējā vajadzība pēc šīs telpas siltumenerģijai tiek aprēķināta, to reizinot ar iepriekšminēto 41 W. Rezultāts ir 1722 vati. Piemēram, uzņemiet akumulatoru, kura katra daļa nodrošina 160 vati no siltuma. Mēs aprēķinām vajadzīgo sekciju skaitu, sadalot kopējo siltuma pieprasījumu pēc katras sadaļas jaudas vērtības. Izrādās 10.8. Kā parasti, noapaļojiet līdz tuvākajam lielākajam veselajam skaitlim, t.i. līdz 11.

Tas ir svarīgi! Ja esat iegādājies akumulatorus, kas nav iedalīti sekcijās, sadaliet kopējo siltuma pieprasījumu pēc visa akumulatora jaudas (norādīts pievienotajā tehniskajā dokumentācijā). Tātad jūs zināt pareizo apkures radiatoru daudzumu.

Aprēķinātus datus ieteicams noapaļot tādēļ, ka ražotāji tehniskajā dokumentācijā bieži norāda jaudu, kas nedaudz pārsniedz faktisko vērtību.

Apkures vajadzībām nepieciešamā radiatoru skaita aprēķināšana

Visprecīzākā aprēķina iespēja

No iepriekšminētajiem aprēķiniem mēs redzējām, ka neviens no tiem nav pilnīgi precīzs, jo pat identiskām telpām, rezultāti, lai arī nedaudz, joprojām ir citādi.

Ja jums ir nepieciešama aprēķinu precizitāte, izmantojiet šādu metodi. Tajā ņemti vērā daudzi faktori, kas var ietekmēt apkures efektivitāti un citus nozīmīgus rādītājus.

Parasti aprēķina formula ir šāda:

T = 100 W / m 2 * A * B * C * D * E * F * G * S,

  • kur T ir kopējais siltuma daudzums, kas nepieciešams attiecīgā telpas apsildīšanai;
  • S ir apsildāmās telpas platība.

Atlikušajiem koeficientiem ir nepieciešams detalizētāks pētījums. Tādējādi koeficients A ņem vērā telpas stiklojuma pazīmes.

Stiklojuma telpas īpatnības

  • 1.27 telpām, kuru logi vienkārši ir iestikloti ar divām glāzēm;
  • 1,0 - telpām ar logiem, kas aprīkoti ar dubultstikliem;
  • 0,85 - ja logiem ir trīskāršs stiklojums.

Koeficients B ņem vērā sienas izolācijas īpatnības

Sienas izolācijas īpašības

  • ja izolācija nav efektīva, pieņem, ka koeficients ir 1,27;
  • ar labu izolāciju (piemēram, ja sienas ir izvietotas 2 ķieģeļos vai mērķtiecīgi izolētas ar augstas kvalitātes siltumizolāciju), koeficients 1,0 tiek izmantots;
  • ar augstu izolācijas līmeni - 0,85.

Koeficients C norāda logu atvērumu kopējās platības un grīdas virsmas attiecību telpā.

Loku atveru kopējās platības un grīdas virsmas attiecība telpā

Atkarība ir šāda:

  • ja koeficients ir 50%, koeficients C tiek ņemts kā 1,2;
  • ja attiecība ir 40%, izmanto koeficientu 1,1;
  • ja koeficients ir 30%, koeficienta vērtība tiek samazināta līdz 1,0;
  • attiecībā uz vēl zemāku procentuālo daļu tiek izmantoti koeficienti 0,9 (par 20%) un 0,8 (10%).

Koeficients D norāda vidējo temperatūru aukstākajā gada periodā.

Siltuma sadale telpā, izmantojot radiatorus

Atkarība ir šāda:

  • ja temperatūra ir -35 un zemāka, tiek pieņemts, ka koeficients ir 1,5;
  • temperatūrā līdz -25 grādiem izmanto vērtību 1,3;
  • ja temperatūra nav zemāka par -20 grādiem, aprēķinu veic ar koeficientu 1,1;
  • reģionu iedzīvotājiem, kuru temperatūra nav zemāka par -15, jāizmanto koeficients 0,9;
  • ja ziemas temperatūra nav zemāka par -10, skaita ar koeficientu 0,7.

Koeficients E norāda ārējo sienu skaitu.

Ārējo sienu skaits

Ja ārējā siena ir vienāda, izmantojiet koeficientu 1,1. Ar divām sienām palieliniet to līdz 1,2; ar trim - līdz 1,3; ja ārējās sienas ir 4, izmantojiet koeficientu 1,4.

F koeficients ņem vērā augšējās telpas īpašības. Atkarība ir šāda:

  • ja neapsildīts mansards atrodas augšpusē, pieņem, ka koeficients ir 1,0;
  • ja bēniņos silda - 0,9;
  • ja kaimiņš augšpusē ir apsildāma dzīvojamā istaba, attiecību var samazināt līdz 0,8.

Un pēdējais koeficients formulai - G - ņem vērā telpas augstumu.

  • telpās ar 2,5 m augstiem griestiem aprēķins tiek veikts, izmantojot koeficientu 1,0;
  • ja telpai ir 3 metru griesti, koeficients tiek palielināts līdz 1,05;
  • ar griestu augstumu 3,5 m, skaita ar koeficientu 1,1;
  • telpas ar 4 metru griestiem tiek aprēķinātas ar koeficientu 1,15;
  • aprēķinot bateriju sekciju skaitu telpu apsildei 4,5 m augstumā, palieliniet koeficientu līdz 1,2.

Šis aprēķins ņem vērā gandrīz visas esošās nianses un ļauj noteikt nepieciešamo siltummezglu sekciju skaitu ar vismazāko kļūdu. Visbeidzot, aprēķināto rādītāju būs jāsadala tikai ar vienas akumulatora daļas siltuma pārnesi (norādiet pievienoto pasu) un, protams, noapaļojiet skaitli, kas atrodas tuvākajam veselajam skaitlim uz augšu.

Kalkulators radiatoru apkurei

Ērtības labad visi šie parametri ir iekļauti speciālā kalkulatorā radiatoru aprēķināšanai. Pietiek tikai norādīt visus pieprasītos parametrus - un noklikšķinot uz pogas "APRĒĶINS", nekavējoties tiks sasniegts vēlamais rezultāts:

Top