Kategorija

Iknedēļas Ziņas

1 Degviela
Mēs izgatavojam pareizo skursteni uz ķieģeļa jumta
2 Sūkņi
Nelielas ķieģeļu krāsnis: mērķis, priekšrocības, konstrukcija
3 Degviela
Apkures temperatūras diagramma
4 Kamīni
Instrukcijas sienas izolācijai no iekšpuses
Galvenais / Radiatori

Kalkulators radiatoru sekciju aprēķināšanai


Neatkarīgi no tā, kā jūs izolēt māju vai dzīvokli, vienkārši nav iespējams to darīt bez apkures. Šim nolūkam bieži tiek izmantota ūdens sildīšana - tā ir ērta, efektīva un izturīga. Izmantojot mūsu kalkulatoru, mēs piedāvājam aprēķināt nepieciešamo radiatora sekciju skaitu tikai pāris minūtēs un izlemt, kurš risinājums vislabāk atbilst jūsu nosacījumiem.

Tas jāņem vērā, uzstādot sildītājus.

Izmantotā kalkulatora vērtība ir orientējoša. Turklāt jums jāņem vērā, ka praksē tiek apstiprināti ne vienmēr ražotāja raksturojumi. Tas nozīmē, ka labāk ir uzstādīt 10% vairāk sadaļu, noapaļojot līdz veselai daļai. Ja jūs saskaras ar to, ka ziemā telpā būs pārāk karsts, tad uzstādiet uz radiatora vārsta, kas regulē cirkulējošā dzesēšanas šķidruma daudzumu. Tas arī palīdzēs ietaupīt laiku, ja jums būs jāaizstāj viena no sadaļām.

Attālumi ir skaidri jāsaglabā noteiktajos robežās:

  • Loku sekcijas platumam kolekcijā vajadzētu būt vismaz 70%. Tas nozīmē, ka labāk ir uzstādīt vairāk sekciju ar mazāku siltuma jaudu.
  • Attālumam no ierīces augšdaļas līdz palodzes vietai jābūt 100-120 mm. Pretējā gadījumā siltuma plūsmas prognozēšana būs daudz sarežģītāka.
  • Lai neuzsildītu ielu, radiatoriem jābūt vismaz 50 mm attālumā no sienas.
  • Starp grīdas plakni un sildītāja apakšējo punktu jāsaglabā 100 mm attālums.

Mēs ceram, ka šis materiāls būs noderīgs, veicot remontdarbus vai uzstādot jaunu ūdens sildīšanas sistēmu.

kalkulatora kalkulators:
radiatora sekciju skaits telpu apkurei

Aprēķinot nepieciešamo siltuma daudzumu, apsildāmās telpas platību aprēķina, pamatojoties uz vajadzīgā patēriņa aprēķinu 100 vati uz kvadrātmetru. Turklāt tiek ņemti vērā vairāki faktori, kas ietekmē telpas kopējo siltuma zudumu, un katrs no šiem faktoriem veicina kopējo aprēķina rezultātu.

Šī aprēķina metode ietver gandrīz visas nianses un balstās uz formulu, kas ļauj samērā precīzi noteikt vajadzību pēc telpas ar siltumenerģiju. Atliek dalīt rezultātu, kas iegūts no alumīnija, tērauda vai bimetāla radiatora vienas siltuma pārneses vērtības un ap to iegūto rezultātu.

Teplius

Aukstā sezonā apkure ir vissvarīgākā komunikāciju sistēma, kas ir atbildīga par komfortablu dzīvošanu mājā. Apkures baterijas ir daļa no šīs sistēmas. No to skaita un apgabala atkarīga no telpas kopējās temperatūras. Tādēļ pareizi aprēķinātais radiatora sekciju skaits ir galvenais faktors, lai efektīvi darbotos visa sistēma, kā arī degvielas ekonomija, ko izmanto dzesēšanas šķidruma sildīšanai.

Kas jums nepieciešams pašnovērtējumos?

Lai precīzi aprēķinātu vajadzīgo apkures radiatoru skaitu dzīvoklī, privātmājā un jebkurā citā telpā, jāņem vērā pietiekami daudz kritēriju.

Kas jāņem vērā:

  • to telpu lielums, kurās tie tiks uzstādīti;
  • logu un ieejas durvju skaits, to platība;
  • materiāli, no kuriem māja tika uzcelta (šajā gadījumā tiek ņemtas vērā sienas, grīda un griesti);
  • telpas atrašanās vieta attiecībā pret galvenajiem punktiem;
  • sildierīces tehniskie parametri.

Ja vēlaties veikt precīzus aprēķinus, izmantojiet SNiP aprēķinātos aprēķinus.

SNiP aprēķināšanas metode

Aptuvenu aprēķinu tabula

SNiP nosaka, ka nepieciešamais radikatoru sekciju optimālais variants ir atkarīgs no siltumenerģijas daudzuma, ko tie emitē. Tam jābūt vienādam ar 100 W uz 1 m² telpas platību.

Aprēķinam izmanto šādu formulu: N = Sx100 / Р

  • N ir akumulatoru sekciju skaits;
  • S ir telpas platība;
  • Р - sekcijas jauda (šo rādītāju var apskatīt produkta pasē).

Bet, tā kā aprēķinos jāņem vērā papildu rādītāji, formulai tiek pievienoti jauni mainīgie lielumi.

Grozījumi formulā

  • Ja mājā ir plastikāta logi, jūs varat samazināt sekciju skaitu par 10%. Tas nozīmē, ka aprēķinam ir pievienots koeficients 0,9.
  • Ja griestu augstums ir 2,5 metri, tiek piemērots 1,0 koeficients. Ja griestu augstums ir lielāks, attiecība palielinās līdz 1,1-1,3.
  • Šis parametrs ietekmē arī ārējo sienu skaitu un biezumu: jo sienas biezākas, jo zemāks koeficients.
  • Logu skaits ietekmē arī siltuma zudumus. Katrs logs palielina attiecību par 5%.
  • Ja virs telpas atrodas apsildāms bēniņi vai bēniņi, šajā telpā ir iespējams samazināt sekciju skaitu.
  • Stūra istaba vai istaba ar balkonu pievieno papildu 1.2 formulu.
  • Paslēpts nišā un slēgts ar dekoratīvajiem ekrāna akumulatoriem, līdz kopējam skaitlim - 15%.

Izmantojot papildu grozījumus, jūs uzzināsiet, cik daudz sadaļu vēlaties ievietot katrā istabā. Un jūs varat viegli uzzināt, cik daudz radiatoru nepieciešams uz kvadrātmetru.

Kā aprēķināt sekciju skaitu: piemērs par čuguna akumulatoriem

Ļaujiet mums aprēķināt, cik radiatora čuguna sekcijas ir jāuzstāda telpā ar diviem divu kameru plastmasas logiem ar griestu augstumu 2,7 m un platību 22 m².

Matemātiskā formula: (22х100 / 145) х1.05х1.1х0.9 = 15.77

Mēs noapaļām iegūto skaitli kopumā - izrādās 16 sekcijas: divas baterijas katram logam ar 8 sekcijām katrā.

Paskaidrojums par koeficientiem:

  • 1.05 ir piecu procentu piemaksa otrajam logam;
  • 1.1 ir griestu augstuma pieaugums;
  • 0.9 - tas ir samazinājums, uzstādot plastmasas logus.

Materiāla ietekme uz sekciju skaitu

Siltumenerģijas salīdzinājums

Izstrādātāji bieži saskaras ar jautājumu par to, kas radiatori siltāks labāk materiāla kontekstā, no kura tie tiek izgatavoti. Galu galā tēraudam, čugunam, varam, alumīnijam ir sava siltuma pārneses ātrums, un tas ir jāņem vērā, veicot aprēķinus.

Kā minēts iepriekš, šo parametru var atrast produkta pasē.

  • Čuguna radiatoram siltuma izkliedēšana ir vienāda ar 145 vatiem.
  • Alumīnijs - 190 vati.
  • Bimetāla - 185 vati.

No šī saraksta mēs varam secināt, ka alumīnija sekciju skaits tiks izmantots mazāk nekā, teiksim, čuguns. Un vairāk nekā bimetāla. Un tas attiecas uz visiem tiem pašiem citiem parametriem, kas minēti iepriekš.

Pārskats par trim veidiem, kā pieslēgt radiatorus.

Telpas platības aprēķins

Šeit tiek izmantota tāda pati formula - N = Sx100 / P, ar vienu rezervāciju: griestu augstums nedrīkst pārsniegt 2,6 m.

Mēs izmantojam parametrus, kas piemērā tika ņemti vērā ar čuguna akumulatoru, taču mēs izdarīsim dažas izmaiņas attiecībā uz logu skaitu.

  • Vienkāršības labad, ņemsim tikai vienu logu: 22x100 / 145 = 15.17

To var noapaļot uz leju līdz 15 sekcijām, taču paturiet prātā, ka trūkstošā sadaļa var samazināt temperatūru par pāris pakāpieniem, kas kopumā samazinās komforta līmeni telpā.

Aprēķins pēc telpu skaita

Šajā gadījumā galvenais rādītājs ir siltumenerģija, kas vienāda ar 41 W uz 1 m³. Tā ir arī standarta vērtība. Taisnība, telpās ar stikla pakešu logiem tiek izmantota 34 W vērtība.

  • 22x2, 6x41 / 145 = 16,17 - noapaļots, izrādās 16 sekcijas.

Pievērsiet uzmanību vienai ļoti smalkajai niansei.

Un ja sadaļas jaudu noteiks ražotājs noteiktā diapazonā (dakša ir uzstādīta starp diviem rādītājiem), tad izvēlieties mazāku rādītāju aprēķiniem.

Aprēķins acī

Siltuma zudumi daudzdzīvokļu ēkā

Šī opcija ir piemērota tiem, kuri matemātiskajos aprēķinos pilnīgi nesaprot kaut ko. Standarta attēlā sadaliet telpas platību - 1 sadaļa 1,8 m².

  • 22 / 1.8 = 12.22 - noapaļot, izrādās 13 sekcijas.

Paturiet prātā: griestu augstums nedrīkst pārsniegt 2,7 m. Ja griesti ir augstāki, jums jāapsver iespēja izmantot sarežģītāku formulu.

Kā jūs varat redzēt, ir iespējams aprēķināt vajadzīgo skaitu sekcijas telpā dažādos veidos. Vēlaties iegūt precīzu rezultātu - izmantojiet SNiP aprēķinu. Jūs nevarat izlemt par papildu faktoriem - izvēlēties jebkuru citu vienkāršotu versiju.

Eksperti iesaka pievienot 10-20% no iegūto sadaļu skaita. Šis korekcijas koeficients ir iekļauts sīva ziemas sala.

Nestandarta konstrukcijas un vertikālo radiatoru izmēri ļauj tos atrast jebkurā vietā - vai tās ir slēptās nišas vai telpas bez logiem. Tie arī ļauj izmantot jebkāda veida savienojumu ar apkures sistēmu.

Aprēķina hidraulika palīdz atrisināt uzdevumu soli, kuru galveno var saukt par optimālo sistēmas parametru aprēķināšanu efektīvai apkurei un izmaksu samazināšanai. Gatavi apkures sistēmas hidrauliskā aprēķina piemēri.

Kā aprēķināt radiatoru sekciju skaitu

Radiatoru skaita aprēķināšanai ir vairākas metodes, taču to būtība ir vienāda: noskaidrojiet maksimālos telpas siltuma zudumus un pēc tam aprēķiniet nepieciešamo sildīšanas ierīču daudzumu, lai tos kompensētu.

Aprēķinu metodes ir atšķirīgas. Vienkāršākie sniedz aptuvenus rezultātus. Tomēr tos var izmantot, ja telpas ir standarta vai piemēro koeficientus, kas ļauj ņemt vērā katras konkrētās istabas esošos "nestandarta" nosacījumus (stūra istaba, izeja uz balkonu, logs uz visu sienu utt.). Ir daudz sarežģītāks aprēķins, izmantojot formulas. Bet būtībā tie ir vienādi koeficienti, kas tiek savākti tikai vienā formā.

Ir vēl viena metode. Tas nosaka faktisko zaudējumu. Īpaša ierīce - termiskais fokusētājs - nosaka reālos siltuma zudumus. Pamatojoties uz šiem datiem, viņi aprēķina, cik radiatoru ir vajadzīgi, lai tos kompensētu. Kas vēl ir labs par šo metodi, ir fakts, ka jūs varat redzēt tieši to, kur siltuma atstāj vissekmīgāko siltumtēlu attēlu. Tas var būt defekts darbā vai celtniecības materiālos, plaisa utt. Tajā pašā laikā jūs varat iztaisnot situāciju.

Radiatoru aprēķins ir atkarīgs no telpas siltuma zudumiem un sadaļas nominālā siltuma jaudas.

Sildīšanas radiatoru aprēķins pa platībām

Vieglākais veids. Aprēķiniet nepieciešamo siltuma daudzumu apkurei, pamatojoties uz telpas telpu, kurā tiks uzstādīti radiatori. Jūs zināt katras telpas platību, un siltuma nepieciešamību var noteikt ar SNiP ēku kodiem:

  • vidējai klimatiskajai joslai, kas paredzēta apkurei 1 m 2 no dzīvojamās telpas, nepieciešami 60-100 W;
  • platībām virs 60 o, ir nepieciešami 150-200W.

Pamatojoties uz šiem noteikumiem, jūs varat aprēķināt, cik daudz siltuma jūsu istaba būs nepieciešama. Ja dzīvoklis / māja atrodas vidējā klimatiskajā zonā, apkurei 16 m 2 platībā ir nepieciešama 1600 W siltuma (16 * 100 = 1600). Tā kā normas ir vidējas, un laika apstākļi neuztur pastāvību, mēs ticam, ka 100W ir vajadzīgs. Lai gan, ja jūs dzīvojat vidējā klimatiskajā joslā dienvidos un ziemas ir vieglas, skatiet 60W katra.

Sildīšanas radiatoru aprēķinus var veikt saskaņā ar SNiP normām

Enerģijas rezerves apkure ir nepieciešama, bet ne tik liela: ar vajadzīgās jaudas palielināšanu palielinās radiatoru skaits. Un jo vairāk radiatori, jo vairāk dzesēšanas sistēmas. Ja tiem, kas ir pieslēgti pie centrālās apkures, tas nav nekritisks, tad tiem, kam ir atsevišķa apkure vai plānošana, liels sistēmas apjoms nozīmē lielas (nevajadzīgas) izmaksas dzesēšanas šķidruma sildīšanai un lielāku sistēmas inerci (noteiktā temperatūra ir mazāk piesardzīga). Un rodas loģisks jautājums: "Kāpēc maksāt vairāk?"

Aprēķinot vajadzību pēc telpas siltuma, mēs varam uzzināt, cik daudz sadaļu ir nepieciešams. Katrs no sildītājiem var izstarot zināmu siltumu, kas norādīts pasē. Paņemiet nepieciešamo siltumu un sadaliet radiatoru jaudu. Rezultāts ir nepieciešamais sekciju skaits, lai kompensētu zaudējumus.

Aprēķiniet radiatora skaitu vienai un tai pašai telpai. Mēs noskaidrojām, ka nepieciešams 1600W. Ļaujiet jaudai vienu sadaļu 170W. Izrādās, 1600/170 = 9.411 gab. Jūs varat noorganizēt uz augšu vai uz leju pēc saviem ieskatiem. Jūs varat noapaļot uz mazāku, piemēram, virtuvē - ir pietiekami daudz papildu siltuma avotu, un lielāks ir labāks telpā ar balkonu, lielu logu vai stūra telpā.

Sistēma ir vienkārša, taču trūkumi ir acīmredzami: griestu augstums var būt atšķirīgs, netiek ņemts vērā sienu, logu, izolācijas materiāls un vairāki faktori. Tādējādi SNiP sildīšanas radiatoru sekciju skaits ir aptuvens. Precīziem rezultātiem nepieciešams veikt pielāgojumus.

Kā aprēķināt radiatora sekcijas pēc telpas tilpuma

Ar šo aprēķinu tiek ņemts vērā ne tikai platība, bet arī griestu augstums, jo jums ir nepieciešams sildīt visu telpā esošo gaisu. Tātad šī pieeja ir pamatota. Un šajā gadījumā tehnika ir līdzīga. Nosakiet telpas tilpumu, un pēc tam, ievērojot normas, noskaidrot, cik daudz siltuma nepieciešams, lai to sildītu:

  • paneļu mājā kubikmetru gaisa sildīšanai nepieciešams 41 W;
  • ķieģeļu mājā m 3 - 34 W.

Ir nepieciešams sildīt visu gaisa daudzumu telpā, jo ir daudz pareizāk skaitīt radiatorus pēc tilpuma

Mēs aprēķināsim visu par to pašu 16m 2 telpu un salīdzināsim rezultātus. Ļaujiet griestu augstums 2,7 m. Apjoms: 16 * 2.7 = 43.2m 3.

Tālāk mēs aprēķinām par iespējām panelī un ķieģeļu mājā:

  • Paneļu mājā. Nepieciešamais apkures siltums ir 43,2 m 3 * 41 V = 1771,2 W. Ja mēs ņemam visas tās pašas sekcijas ar 170W jaudu, mēs saņemam: 1771W / 170W = 10.418 gabali (11 gab.).
  • Ķieģeļu mājā. Siltumapgādei nepieciešams 43.2m 3 * 34W = 1468.8W. Mēs skaita radiatorus: 1468,8 W / 170 W = 8,64 gab. (9 gab.).

Kā redzat, atšķirība ir diezgan liela: 11 gabali un 9 gab. Turklāt, aprēķinot pa apgabaliem, tika iegūta vidējā vērtība (ja noapaļota tajā pašā virzienā) - 10 gab.

Rezultātu pielāgošana

Lai iegūtu precīzāku aprēķinu, ir jāņem vērā pēc iespējas vairāk faktoru, kas samazina vai palielina siltuma zudumus. Tieši no tā tiek izgatavotas sienas un cik labi tās ir izolētas, cik lieli ir logi, un kāda veida stiklojums ir uz tām, cik daudz sienas istabā noved pie ielas utt. Lai to izdarītu, ir koeficienti, pēc kuriem jums nepieciešams reizināt konstatētās siltuma zuduma vērtības telpā.

Radiatoru skaits ir atkarīgs no siltuma zuduma daudzuma

Windows veido siltuma zudumus no 15% līdz 35%. Konkrētais skaitlis ir atkarīgs no loga lieluma un no tā, cik labi tas ir izolēts. Tādēļ ir divi attiecīgie koeficienti:

  • loga platības attiecība pret grīdas platību:
    • 10% - 0,8
    • 20% - 0,9
    • 30% - 1,0
    • 40% - 1,1
    • 50% - 1,2
  • stiklojums:
    • trīs kameru stikla pakete vai argons dubultā stikla logā - 0,85
    • Parasts divkameru dubultstiklojums - 1,0
    • parasts dubultstikli - 1,27.

Sienas un jumts

Lai ņemtu vērā zaudējumus, svarīgi ir sienu materiāli, siltumizolācijas pakāpe, sienu skaits, kas vērstas uz ielu. Šeit ir šo faktoru faktori.

  • Ķieģeļu sienas ar biezumu no diviem ķieģeļiem tiek uzskatītas par normu - 1,0
  • nepietiekošs (nav) - 1,27
  • labi - 0,8

Ārējās sienas:

  • interjers - lossless, koeficients 1,0
  • viens - 1.1
  • divi - 1,2
  • trīs - 1.3

Siltuma zudumu daudzumu ietekmē sildīšana vai arī telpa nav uz augšu. Ja uz augšu (māju otrajā stāvā, citā dzīvoklī utt.) Ir apdzīvojams apsildāmā telpa, samazinājuma koeficients ir 0,7, ja apsildāmajā mansardā ir 0,9. Tiek uzskatīts, ka neapsildīts bēniņi neietekmē temperatūru un (koeficients 1,0).

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Ja aprēķins veikts uz apgabala, un griestu augstums ir nestandarta (par standartu ņem 2,7 m augstumu), tad tiek izmantots proporcionāls palielinājums / samazinājums, izmantojot koeficientu. To uzskata par vieglu. Šim nolūkam telpā esošo griestu reālais augstums ir sadalīts ar standarta 2,7 m. Iegūstiet vēlamo koeficientu.

Apsveriet, piemēram: ļaujiet griestu augstumu 3,0 m. Mēs iegūstam: 3,0 m / 2,7 m = 1,1. Tāpēc radiatora sekciju skaits, ko aprēķina pēc platības šai telpai, jāreizina ar 1.1.

Visas šīs normas un koeficienti tika noteikti dzīvokļiem. Lai ņemtu vērā siltuma zudumus mājās caur jumtu un pagrabstāvu / pamatni, jums jāpalielina rezultāts par 50%, ti, privātmājas koeficients ir 1,5.

Klimatiskie faktori

Varat veikt pielāgojumus atkarībā no vidējās temperatūras ziemā:

  • -10 о С un augstāk - 0,7
  • -15 о С - 0.9
  • -20 о С - 1.1
  • -25 о С - 1,3
  • -30 о С - 1,5

Ņemot visus nepieciešamos pielāgojumus, iegūstiet precīzāku radiatoru skaitu, kas nepieciešamas telpas apsildīšanai, ņemot vērā telpu parametrus. Taču ne visi kritēriji ietekmē siltuma starojuma spēku. Ir tehniskas detaļas, kuras tiks aplūkotas turpmāk.

Dažādu radiatoru tipu aprēķins

Ja jūs gatavojaties uzstādīt standarta izmēra šķērsgriezuma radiatorus (ar aksiālo attālumu 50 cm augstumā) un jau izvēlējušies nepieciešamo materiālu, modeli un izmēru, nebūtu grūti aprēķināt to skaitu. Lielākā daļa cienījamu uzņēmumu, kas piegādā labas apkures iekārtas, ir tehniski dati par visām izmaiņām, starp kurām ir arī siltuma jauda. Ja nav jaudas, bet ir norādīts dzesēšanas šķidruma plūsmas ātrums, tad pāreja uz elektroenerģiju ir vienkārša: dzesēšanas šķidruma caurplūdums ar 1 l / min ir aptuveni vienāds ar jaudu 1 kW (1000 W).

Radiatora aksiālo attālumu nosaka augstums starp atveres centriem dzesēšanas šķidruma pievadīšanai / izvadīšanai.

Lai daudzās vietnēs klientiem atvieglotu dzīvi, viņi instalē speciāli izstrādātu kalkulatoru programmu. Tad apkures radiatoru sekciju aprēķins tiek samazināts, iekļaujot datus jūsu telpā attiecīgajos laukos. Un pie produkcijas jums ir gatavs rezultāts: šī modeļa sadaļu skaits gabalos.

Aksiālais attālums tiek noteikts starp dzesēšanas šķidruma atveru centriem

Bet, ja jūs vienkārši mēģināt izdomāt iespējamās iespējas, tad ir vērts apsvērt, ka tāda paša izmēra radiatori no dažādiem materiāliem ir atšķirīgi siltuma jauda. Metode, kā aprēķināt bimetāla radiatoru daļu skaitu alumīnija, tērauda vai čuguna aprēķināšanai, nav atšķirīga. Tikai vienas sadaļas siltuma jauda var būt atšķirīga.

Lai to aprēķinātu, ir vieglāk, ir vidējie dati, ar kuriem var pārvietoties. Vienai radiatora sekcijai, kuras asi ir 50 cm, tiek ņemtas šādas jaudas vērtības:

  • alumīnijs - 190W
  • bimetāla - 185W
  • čuguns - 145W.

Ja jūs vienkārši domājat, kuru materiālu izvēlēties, varat izmantot šos datus. Skaidrības labad mēs piedāvājam visvienkāršāko bimetāla radiatoru sekciju aprēķinu, kurā tiek ņemta vērā tikai telpas telpa.

Nosakot sildītāju skaitu no standarta izmēra bimetāla (centra attālums 50cm), tiek pieņemts, ka vienā sadaļā var uzsildīt 1,8 m 2 platību. Tad 16 m 2 telpās jums nepieciešams: 16 m 2 / 1.8 m 2 = 8.88 gab. Mēs aprindām - mums vajag 9 sadaļas.

Tāpat mēs domājam par čuguna vai tērauda barteru. Nepieciešamas tikai normas:

  • bimetāla radiators - 1,8 m 2
  • alumīnijs - 1,9-2,0 m 2
  • čuguns - 1,4-1,5 m 2.

Šie dati attiecas uz sadaļām, kuru savstarpējais attālums ir 50 cm. Mūsdienās modeļi tiek pārdoti no ļoti atšķirīgiem augstumiem: no 60 cm līdz 20 cm un pat zemāk. Modeļi 20cm un zemāk tiek saukti par apmalēm. Protams, to jauda atšķiras no noteiktā standarta, un, ja jūs plānojat izmantot "nestandarta", jums būs jāveic korekcijas. Vai arī meklējiet savus pases datus vai izlasiet to pats. Mēs pieņemam, ka siltuma ierīces siltuma izlaide tieši ir atkarīga no tās platības. Augstuma samazināšanās dēļ ierīces platība samazinās, un līdz ar to jauda samazinās proporcionāli. Tas ir, jums ir jāatrod izvēlētā radiatora augstuma attiecība ar standartu, un pēc tam izmantojiet šo koeficientu, lai koriģētu rezultātu.

Čuguna radiatoru aprēķins. Var aprēķināt pēc telpas vai tilpuma

Skaidrības labad mēs aprēķinām alumīnija radiatorus uz platību. Numurs ir vienāds: 16m 2. Mēs ieskauj standarta izmēra sekciju skaitu: 16m 2 / 2m 2 = 8 gab. Bet mēs vēlamies izmantot mazizmēra sekcijas 40 cm augstumā. Mēs atrodamies izvēlētā lieluma radiatoru attiecība pret standartu: 50cm / 40cm = 1.25. Un tagad mēs koriģējam summu: 8 gab * 1.25 = 10 gab.

Korekcija atkarībā no apkures sistēmas režīma

Pasu datu izgatavotāji norāda maksimālo radiatoru spēku: ar augstas temperatūras lietošanas režīmu - dzesēšanas šķidruma temperatūra 90 o C plūsmā, atgriešanās laikā - 70 o C (apzīmē 90/70) telpai jābūt 20 o C. Taču šajā režīmā modernās sistēmas apkure ir ļoti reta. Parasti vidējas jaudas režīms ir 75/65/20 vai pat zemas temperatūras ar parametriem 55/45/20. Ir skaidrs, ka aprēķins ir nepieciešams, lai labotu.

Lai ņemtu vērā sistēmas darbības režīmu, ir jānosaka sistēmas temperatūras galva. Temperatūras spiediens ir starpība starp gaisa temperatūru un sildīšanas ierīcēm. Šajā gadījumā sildītāju temperatūra tiek aprēķināta kā aritmētiskais vidējais lielums starp plūsmas un plūsmas vērtību.

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Lai padarītu to skaidrāku, mēs veiksim čuguna radiatoru aprēķinus diviem režīmiem: augsta temperatūra un zemas temperatūras standarta izmēra sekcijas (50 cm). Numurs ir vienāds: 16m 2. Augstas temperatūras režīmā, 90/70/20, viena čuguna daļa paaugstina 1,5 m 2. Tā kā mums ir nepieciešams 16m 2 / 1.5m 2 = 10,6 gab. Noapaļot uz augšu - 11 gab. Sistēma plāno izmantot zemas temperatūras režīmu 55/45/20. Tagad mēs atrodam temperatūras spiedienu katrai sistēmai:

  • augsta temperatūra 90/70 / 20- (90 + 70) / 2-20 = 60 o C;
  • zemas temperatūras 55/45/20 - (55 + 45) / 2-20 = 30 o C.

Tas nozīmē, ka, ja tiek izmantots zemas temperatūras darbības režīms, telpā ar siltumu ir nepieciešamas divas reizes vairāk sekciju. Mūsu piemērs ir nepieciešams, lai 16m 2 telpā būtu nepieciešamas 22 čuguna radiatoru daļas. Izrādās liels akumulators. Tas, starp citu, ir viens no iemesliem, kāpēc šāda veida sildītājs nav ieteicams izmantot tīklos ar zemu temperatūru.

Ar šo aprēķinu jūs varat ņemt vērā vēlamo gaisa temperatūru. Ja vēlaties, lai telpa nebūtu 20 ° C, piemēram, 25 ° C, vienkārši aprēķiniet siltuma spiedienu šim gadījumam un atrodiet vajadzīgo koeficientu. Darīsim aprēķinus tiem pašiem čuguna radiatoriem: parametri būs 90/70/25. Mēs uzskatām temperatūras spiedienu šim gadījumam (90 + 70) / 2-25 = 55 o C. Tagad mēs atrodam attiecību 60 o C / 55 o C = 1,1. Lai nodrošinātu temperatūru 25 ° C, jums vajag 11 vnt. * 1,1 = 12,1 gab.

Radiatora jaudas atkarība no savienojuma un atrašanās vietas

Papildus visiem iepriekš aprakstītajiem parametriem radiatora siltuma jauda mainās atkarībā no savienojuma veida. Labāko uzskata par diagonālo savienojumu ar plūsmu no augšas, tādā gadījumā nav siltuma zudumu. Vislielākie zudumi vērojami ar sānu savienojumu - 22%. Visi pārējie efektivitātes vidējie rādītāji. Aptuvenās vērtības zaudējumiem procentos parādīts attēlā.

Siltuma zudumi radiatoros atkarībā no savienojuma

Radiatora faktiskā jauda tiek samazināta arī bloķējošu elementu klātbūtnē. Piemēram, ja sliekšņa karājas no augšas, siltuma jauda samazinās par 7-8%, ja tas pilnībā nenosedz radiatoru, tad zaudējumi ir 3-5%. Uzstādot acu ekrānu, kas nesasniedz grīdu, zaudējumi ir aptuveni tādi paši kā paliktņa pārsega gadījumā: 7-8%. Bet, ja ekrāns pilnībā aptver visu sildītāju, tā siltuma padeve tiek samazināta par 20-25%.

Siltuma daudzums ir atkarīgs no uzstādīšanas

Siltuma daudzums ir atkarīgs no uzstādīšanas vietas.

Radiatoru daudzuma noteikšana monotube sistēmām

Ir vēl viens ļoti svarīgs jautājums: viss iepriekš minētais attiecas uz divu cauruļu apkures sistēmu, kad dzesēšanas šķidrums ar tādu pašu temperatūru nonāk pie katra radiatora ieejas. Viena cauruļvadu sistēma tiek uzskatīta par daudz sarežģītāku: tur, ūdens kļūst arvien vairāk aukstāks katram nākamajam sildītājam. Un, ja jūs vēlaties aprēķināt radiatoru skaitu viencaurules sistēmai, katru reizi jāpārrēķina temperatūra, un tas ir grūti un laikietilpīgi. Kāda ir izeja? Viena no iespējām ir noteikt radiatoru spēku kā divu cauruļu sistēmai, un pēc tam, proporcionāli siltuma izlaides kritumam, pievienojiet sekcijas, lai palielinātu akumulatora kopējo siltumu.

Monotube sistēmā ūdens katram radiatorim kļūst arvien vairāk aukstāks.

Paskaidrosim ar piemēru. Diagramma parāda viencaurules apkures sistēmu ar sešiem radiatoriem. Bateriju skaits ir noteikts divu cauruļu vadiem. Tagad jums ir jāveic korekcija. Pirmajam sildītājam viss paliek nemainīgs. Otrajā vietā jau ir dzesēšanas šķidrums ar zemāku temperatūru. Mēs nosaka% jaudas kritumu un palielina sekciju skaitu ar atbilstošo vērtību. Attēls ir šāds: 15kW-3kW = 12kW. Atrodiet procentuālo attiecību: temperatūras kritums ir 20%. Tādējādi, lai kompensētu, mēs palielinām radiatoru skaitu: ja jums vajag 8 gab, tas būs par 20% - 9 vai 10 gab. Tas ir tas, kur zināšanas par istabu ir noderīgas: ja tā ir guļamistaba vai bērnudārzs, apaļ tās uz augšu, ja tā ir dzīvojamā istaba vai cita līdzīga telpa, apaļo to līdz mazākajam. Ņem vērā atrašanās vietu pasaules malās: ziemeļu kārta līdz lielai, dienvidos - uz mazāku.

Monotube sistēmās ir nepieciešams pievienot sekcijas radiatoros, kas atrodas tālāk gar filiāli

Šī metode acīmredzami nav ideāla: galu galā izrādās, ka pēdējam akumulatoram filiālē vajadzētu būt vienkārši milzīgu izmēru: pēc sistēmas principa, dzesēšanas šķidrums ar īpašu siltumietilpību, kas vienāda ar tās jaudu, tiek piegādāts līdz tā ievadam, un praktiski nav iespējams pilnībā noņemt 100%. Tāpēc, nosakot katla jaudu monotube sistēmām, parasti ir nepieciešams veikt kādu rezervi, uzstādīt slēgierīces un savienot radiatorus caur apvadi, lai varētu regulēt siltuma pārnesi, tādējādi kompensējot dzesēšanas šķidruma temperatūras kritumu. No visa šī ir viena lieta: ir jāpalielina viencauruļu sistēmas un / vai radiatoru izmēru skaits, un, palielinoties attālumam no filiāles sākuma, tiks uzstādītas vairāk un vairāk sekcijas.

Rezultāti

Radiatoru sekciju aptuvenais aprēķins ir vienkāršs un ātrs. Bet skaidrojums, kas atkarīgs no visām telpu īpašībām, lieluma, savienojuma veida un atrašanās vietas, prasa uzmanību un laiku. Bet jūs varat precīzi noteikt sildītāju skaitu, lai ziemā radītu komfortablu atmosfēru.

Čuguna radiatoru aprēķins zonā

Kā aprēķināt radiatoru sekciju skaitu

Radiatoru skaita aprēķināšanai ir vairākas metodes, taču to būtība ir vienāda: noskaidrojiet maksimālos telpas siltuma zudumus un pēc tam aprēķiniet nepieciešamo sildīšanas ierīču daudzumu, lai tos kompensētu.

Aprēķinu metodes ir atšķirīgas. Vienkāršākie sniedz aptuvenus rezultātus. Tomēr tos var izmantot, ja telpas ir standarta vai piemēro koeficientus, kas ļauj ņemt vērā katras konkrētās istabas esošos "nestandarta" nosacījumus (stūra istaba, izeja uz balkonu, logs uz visu sienu utt.). Ir daudz sarežģītāks aprēķins, izmantojot formulas. Bet būtībā tie ir vienādi koeficienti, kas tiek savākti tikai vienā formā.

Ir vēl viena metode. Tas nosaka faktisko zaudējumu. Īpaša ierīce - termiskais fokusētājs - nosaka reālos siltuma zudumus. Pamatojoties uz šiem datiem, viņi aprēķina, cik radiatoru ir vajadzīgi, lai tos kompensētu. Kas vēl ir labs par šo metodi, ir fakts, ka jūs varat redzēt tieši to, kur siltuma atstāj vissekmīgāko siltumtēlu attēlu. Tas var būt defekts darbā vai celtniecības materiālos, plaisa utt. Tajā pašā laikā jūs varat iztaisnot situāciju.

Radiatoru aprēķins ir atkarīgs no telpas siltuma zudumiem un sadaļas nominālā siltuma jaudas.

Sildīšanas radiatoru aprēķins pa platībām

Vieglākais veids. Aprēķiniet nepieciešamo siltuma daudzumu apkurei, pamatojoties uz telpas telpu, kurā tiks uzstādīti radiatori. Jūs zināt katras telpas platību, un siltuma nepieciešamību var noteikt ar SNiP ēku kodiem:

  • vidējai klimatiskajai joslai, kas paredzēta apkurei 1 m 2 no dzīvojamās telpas, nepieciešami 60-100 W;
  • platībām virs 60 o, ir nepieciešami 150-200W.

Pamatojoties uz šiem noteikumiem, jūs varat aprēķināt, cik daudz siltuma jūsu istaba būs nepieciešama. Ja dzīvoklis / māja atrodas vidējā klimatiskajā zonā, apkurei 16 m 2 platībā ir nepieciešama 1600 W siltuma (16 * 100 = 1600). Tā kā normas ir vidējas, un laika apstākļi neuztur pastāvību, mēs ticam, ka 100W ir vajadzīgs. Lai gan, ja jūs dzīvojat vidējā klimatiskajā joslā dienvidos un ziemas ir vieglas, skatiet 60W katra.

Sildīšanas radiatoru aprēķinus var veikt saskaņā ar SNiP normām

Enerģijas rezerves apkure ir nepieciešama, bet ne tik liela: ar vajadzīgās jaudas palielināšanu palielinās radiatoru skaits. Un jo vairāk radiatori, jo vairāk dzesēšanas sistēmas. Ja tiem, kas ir pieslēgti pie centrālās apkures, tas nav nekritisks, tad tiem, kam ir atsevišķa apkure vai plānošana, liels sistēmas apjoms nozīmē lielas (nevajadzīgas) izmaksas dzesēšanas šķidruma sildīšanai un lielāku sistēmas inerci (noteiktā temperatūra ir mazāk piesardzīga). Un rodas loģisks jautājums: "Kāpēc maksāt vairāk?"

Aprēķinot vajadzību pēc telpas siltuma, mēs varam uzzināt, cik daudz sadaļu ir nepieciešams. Katrs no sildītājiem var izstarot zināmu siltumu, kas norādīts pasē. Paņemiet nepieciešamo siltumu un sadaliet radiatoru jaudu. Rezultāts ir nepieciešamais sekciju skaits, lai kompensētu zaudējumus.

Aprēķiniet radiatora skaitu vienai un tai pašai telpai. Mēs noskaidrojām, ka nepieciešams 1600W. Ļaujiet jaudai vienu sadaļu 170W. Izrādās, 1600/170 = 9.411 gab. Jūs varat noorganizēt uz augšu vai uz leju pēc saviem ieskatiem. Jūs varat noapaļot uz mazāku, piemēram, virtuvē - ir pietiekami daudz papildu siltuma avotu, un lielāks ir labāks telpā ar balkonu, lielu logu vai stūra telpā.

Sistēma ir vienkārša, taču trūkumi ir acīmredzami: griestu augstums var būt atšķirīgs, netiek ņemts vērā sienu, logu, izolācijas materiāls un vairāki faktori. Tādējādi SNiP sildīšanas radiatoru sekciju skaits ir aptuvens. Precīziem rezultātiem nepieciešams veikt pielāgojumus.

Kā aprēķināt radiatora sekcijas pēc telpas tilpuma

Ar šo aprēķinu tiek ņemts vērā ne tikai platība, bet arī griestu augstums, jo jums ir nepieciešams sildīt visu telpā esošo gaisu. Tātad šī pieeja ir pamatota. Un šajā gadījumā tehnika ir līdzīga. Nosakiet telpas tilpumu, un pēc tam, ievērojot normas, noskaidrot, cik daudz siltuma nepieciešams, lai to sildītu:

  • paneļu mājā kubikmetru gaisa sildīšanai nepieciešams 41 W;
  • ķieģeļu mājā m 3 - 34 W.

Ir nepieciešams sildīt visu gaisa daudzumu telpā, jo ir daudz pareizāk skaitīt radiatorus pēc tilpuma

Mēs aprēķināsim visu par to pašu 16m 2 telpu un salīdzināsim rezultātus. Ļaujiet griestu augstums 2,7 m. Apjoms: 16 * 2.7 = 43.2m 3.

Tālāk mēs aprēķinām par iespējām panelī un ķieģeļu mājā:

  • Paneļu mājā. Nepieciešamais apkures siltums ir 43,2 m 3 * 41 V = 1771,2 W. Ja mēs ņemam visas tās pašas sekcijas ar 170W jaudu, mēs saņemam: 1771W / 170W = 10.418 gabali (11 gab.).
  • Ķieģeļu mājā. Siltumapgādei nepieciešams 43.2m 3 * 34W = 1468.8W. Mēs skaita radiatorus: 1468,8 W / 170 W = 8,64 gab. (9 gab.).

Kā redzat, atšķirība ir diezgan liela: 11 gabali un 9 gab. Turklāt, aprēķinot pa apgabaliem, tika iegūta vidējā vērtība (ja noapaļota tajā pašā virzienā) - 10 gab.

Rezultātu pielāgošana

Lai iegūtu precīzāku aprēķinu, ir jāņem vērā pēc iespējas vairāk faktoru, kas samazina vai palielina siltuma zudumus. Tieši no tā tiek izgatavotas sienas un cik labi tās ir izolētas, cik lieli ir logi, un kāda veida stiklojums ir uz tām, cik daudz sienas istabā noved pie ielas utt. Lai to izdarītu, ir koeficienti, pēc kuriem jums nepieciešams reizināt konstatētās siltuma zuduma vērtības telpā.

Radiatoru skaits ir atkarīgs no siltuma zuduma daudzuma

Windows veido siltuma zudumus no 15% līdz 35%. Konkrētais skaitlis ir atkarīgs no loga lieluma un no tā, cik labi tas ir izolēts. Tādēļ ir divi attiecīgie koeficienti:

  • loga platības attiecība pret grīdas platību:
    • 10% - 0,8
    • 20% - 0,9
    • 30% - 1,0
    • 40% - 1,1
    • 50% - 1,2
  • stiklojums:
    • trīs kameru stikla pakete vai argons dubultā stikla logā - 0,85
    • Parasts divkameru dubultstiklojums - 1,0
    • parasts dubultstikli - 1,27.

Sienas un jumts

Lai ņemtu vērā zaudējumus, svarīgi ir sienu materiāli, siltumizolācijas pakāpe, sienu skaits, kas vērstas uz ielu. Šeit ir šo faktoru faktori.

  • Ķieģeļu sienas ar biezumu no diviem ķieģeļiem tiek uzskatītas par normu - 1,0
  • nepietiekošs (nav) - 1,27
  • labi - 0,8

Ārējās sienas:

  • interjers - lossless, koeficients 1,0
  • viens - 1.1
  • divi - 1,2
  • trīs - 1.3

Siltuma zudumu daudzumu ietekmē sildīšana vai arī telpa nav uz augšu. Ja uz augšu (māju otrajā stāvā, citā dzīvoklī utt.) Ir apdzīvojams apsildāmā telpa, samazinājuma koeficients ir 0,7, ja apsildāmajā mansardā ir 0,9. Tiek uzskatīts, ka neapsildīts bēniņi neietekmē temperatūru un (koeficients 1,0).

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Ja aprēķins veikts uz apgabala, un griestu augstums ir nestandarta (par standartu ņem 2,7 m augstumu), tad tiek izmantots proporcionāls palielinājums / samazinājums, izmantojot koeficientu. To uzskata par vieglu. Šim nolūkam telpā esošo griestu reālais augstums ir sadalīts ar standarta 2,7 m. Iegūstiet vēlamo koeficientu.

Apsveriet, piemēram: ļaujiet griestu augstumu 3,0 m. Mēs iegūstam: 3,0 m / 2,7 m = 1,1. Tāpēc radiatora sekciju skaits, ko aprēķina pēc platības šai telpai, jāreizina ar 1.1.

Visas šīs normas un koeficienti tika noteikti dzīvokļiem. Lai ņemtu vērā siltuma zudumus mājās caur jumtu un pagrabstāvu / pamatni, jums jāpalielina rezultāts par 50%, ti, privātmājas koeficients ir 1,5.

Klimatiskie faktori

Varat veikt pielāgojumus atkarībā no vidējās temperatūras ziemā:

Ņemot visus nepieciešamos pielāgojumus, iegūstiet precīzāku radiatoru skaitu, kas nepieciešamas telpas apsildīšanai, ņemot vērā telpu parametrus. Taču ne visi kritēriji ietekmē siltuma starojuma spēku. Ir tehniskas detaļas, kuras tiks aplūkotas turpmāk.

Dažādu radiatoru tipu aprēķins

Ja jūs gatavojaties uzstādīt standarta izmēra šķērsgriezuma radiatorus (ar aksiālo attālumu 50 cm augstumā) un jau izvēlējušies nepieciešamo materiālu, modeli un izmēru, nebūtu grūti aprēķināt to skaitu. Lielākā daļa cienījamu uzņēmumu, kas piegādā labas apkures iekārtas, ir tehniski dati par visām izmaiņām, starp kurām ir arī siltuma jauda. Ja nav jaudas, bet tiek norādīts dzesēšanas šķidruma plūsmas ātrums, tad pāreja uz jaudu ir vienkārša: dzesēšanas plūsma pie 1 l / min ir aptuveni vienāda ar jaudu 1 kW (1000 W).

Radiatora aksiālo attālumu nosaka augstums starp atveru centriem dzesēšanas šķidruma pievadīšanai / izvadīšanai

Lai daudzās vietnēs klientiem atvieglotu dzīvi, viņi instalē speciāli izstrādātu kalkulatoru programmu. Tad apkures radiatoru sekciju aprēķins tiek samazināts, iekļaujot datus jūsu telpā attiecīgajos laukos. Un pie produkcijas jums ir gatavs rezultāts: šī modeļa sadaļu skaits gabalos.

Aksiālais attālums tiek noteikts starp dzesēšanas šķidruma atveru centriem

Bet, ja jūs vienkārši mēģināt izdomāt iespējamās iespējas, tad ir vērts apsvērt, ka tāda paša izmēra radiatori no dažādiem materiāliem ir atšķirīgi siltuma jauda. Metode, kā aprēķināt bimetāla radiatoru daļu skaitu alumīnija, tērauda vai čuguna aprēķināšanai, nav atšķirīga. Tikai vienas sadaļas siltuma jauda var būt atšķirīga.

Lai to aprēķinātu, ir vieglāk, ir vidējie dati, ar kuriem var pārvietoties. Vienai radiatora sekcijai, kuras asi ir 50 cm, tiek ņemtas šādas jaudas vērtības:

  • alumīnijs - 190W
  • bimetāla - 185W
  • čuguns - 145W.

Ja jūs vienkārši domājat, kuru materiālu izvēlēties, varat izmantot šos datus. Skaidrības labad mēs piedāvājam visvienkāršāko bimetāla radiatoru sekciju aprēķinu, kurā tiek ņemta vērā tikai telpas telpa.

Nosakot sildītāju skaitu no standarta izmēra bimetāla (centra attālums 50cm), tiek pieņemts, ka vienā sadaļā var uzsildīt 1,8 m 2 platību. Tad 16 m 2 telpās jums nepieciešams: 16 m 2 / 1.8 m 2 = 8.88 gab. Mēs aprindām - mums vajag 9 sadaļas.

Tāpat mēs domājam par čuguna vai tērauda barteru. Nepieciešamas tikai normas:

  • bimetāla radiators - 1,8 m 2
  • alumīnijs - 1,9-2,0 m 2
  • čuguns - 1,4-1,5 m 2.

Šie dati attiecas uz sadaļām, kuru savstarpējais attālums ir 50 cm. Mūsdienās modeļi tiek pārdoti no ļoti atšķirīgiem augstumiem: no 60 cm līdz 20 cm un pat zemāk. Modeļi 20cm un zemāk tiek saukti par apmalēm. Protams, to jauda atšķiras no noteiktā standarta, un, ja jūs plānojat izmantot "nestandarta", jums būs jāveic korekcijas. Vai arī meklējiet savus pases datus vai izlasiet to pats. Mēs pieņemam, ka siltuma ierīces siltuma izlaide tieši ir atkarīga no tās platības. Augstuma samazināšanās dēļ ierīces platība samazinās, un līdz ar to jauda samazinās proporcionāli. Tas ir, jums ir jāatrod izvēlētā radiatora augstuma attiecība ar standartu, un pēc tam izmantojiet šo koeficientu, lai koriģētu rezultātu.

Čuguna radiatoru aprēķins. Var aprēķināt pēc telpas vai tilpuma

Skaidrības labad mēs aprēķinām alumīnija radiatorus uz platību. Istaba ir vienāda: 16m 2. Mēs skatit standarta izmēru sekcijas: 16m 2/2 m 2 = 8 gab. Bet mēs vēlamies izmantot mazizmēra sekcijas 40 cm augstumā. Mēs atrodamies izvēlētā lieluma radiatoru attiecība pret standartu: 50cm / 40cm = 1.25. Un tagad mēs koriģējam summu: 8 gab * 1.25 = 10 gab.

Korekcija atkarībā no apkures sistēmas režīma

Pasu datu izgatavotāji norāda maksimālo radiatoru spēku: ar augstas temperatūras lietošanas režīmu - dzesēšanas šķidruma temperatūra 90 o C plūsmā, atgriešanās laikā - 70 o C (apzīmē 90/70) telpai jābūt 20 o C. Taču šajā režīmā modernās sistēmas apkure ir ļoti reta. Parasti vidējas jaudas režīms ir 75/65/20 vai pat zemas temperatūras ar parametriem 55/45/20. Ir skaidrs, ka aprēķins ir nepieciešams, lai labotu.

Lai ņemtu vērā sistēmas darbības režīmu, ir jānosaka sistēmas temperatūras galva. Temperatūras spiediens ir starpība starp gaisa temperatūru un sildīšanas ierīcēm. Šajā gadījumā sildītāju temperatūra tiek aprēķināta kā aritmētiskais vidējais lielums starp plūsmas un plūsmas vērtību.

Lai pareizi aprēķinātu radiatora sekciju skaitu, jāņem vērā telpu un klimata īpašības.

Lai padarītu to skaidrāku, mēs veiksim čuguna radiatoru aprēķinus diviem režīmiem: augsta temperatūra un zemas temperatūras standarta izmēra sekcijas (50 cm). Telpā ir tas pats: 16m 2. Viena čuguna sekcija augstas temperatūras režīmā 90/70/20 silda 1,5m 2. Tāpēc mums būs nepieciešams 16m 2 / 1.5m 2 = 10.6 gab. Noapaļot uz augšu - 11 gab. Sistēma plāno izmantot zemas temperatūras režīmu 55/45/20. Tagad mēs atrodam temperatūras spiedienu katrai sistēmai:

  • augsta temperatūra 90/70 / 20- (90 + 70) / 2-20 = 60 o C;
  • zemas temperatūras 55/45/20 - (55 + 45) / 2-20 = 30 o C.

Tas nozīmē, ka, ja tiek izmantots zemas temperatūras darbības režīms, telpā ar siltumu ir nepieciešamas divas reizes vairāk sekciju. Mūsu piemērs ir nepieciešams, lai 16m 2 telpā būtu nepieciešamas 22 čuguna radiatoru daļas. Izrādās liels akumulators. Tas, starp citu, ir viens no iemesliem, kāpēc šāda veida sildītājs nav ieteicams izmantot tīklos ar zemu temperatūru.

Ar šo aprēķinu jūs varat ņemt vērā vēlamo gaisa temperatūru. Ja vēlaties, lai telpa nebūtu 20 ° C, piemēram, 25 ° C, vienkārši aprēķiniet siltuma spiedienu šim gadījumam un atrodiet vajadzīgo koeficientu. Darīsim aprēķinus tiem pašiem čuguna radiatoriem: parametri būs 90/70/25. Mēs uzskatām temperatūras spiedienu šim gadījumam (90 + 70) / 2-25 = 55 o C. Tagad mēs atrodam attiecību 60 o C / 55 o C = 1,1. Lai nodrošinātu temperatūru 25 ° C, jums vajag 11 vnt. * 1,1 = 12,1 gab.

Radiatora jaudas atkarība no savienojuma un atrašanās vietas

Papildus visiem iepriekš aprakstītajiem parametriem radiatora siltuma jauda mainās atkarībā no savienojuma veida. Labāko uzskata par diagonālo savienojumu ar plūsmu no augšas, tādā gadījumā nav siltuma zudumu. Vislielākie zudumi vērojami ar sānu savienojumu - 22%. Visi pārējie efektivitātes vidējie rādītāji. Aptuvenās vērtības zaudējumiem procentos parādīts attēlā.

Siltuma zudumi radiatoros atkarībā no savienojuma

Radiatora faktiskā jauda tiek samazināta arī bloķējošu elementu klātbūtnē. Piemēram, ja sliekšņa karājas no augšas, siltuma jauda samazinās par 7-8%, ja tas pilnībā nenosedz radiatoru, tad zaudējumi ir 3-5%. Uzstādot acu ekrānu, kas nesasniedz grīdu, zaudējumi ir aptuveni tādi paši kā paliktņa pārsega gadījumā: 7-8%. Bet, ja ekrāns pilnībā aptver visu sildītāju, tā siltuma padeve tiek samazināta par 20-25%.

Siltuma daudzums ir atkarīgs no uzstādīšanas

Siltuma daudzums ir atkarīgs no uzstādīšanas vietas.

Radiatoru daudzuma noteikšana monotube sistēmām

Ir vēl viens ļoti svarīgs jautājums: viss iepriekš minētais attiecas uz divu cauruļu apkures sistēmu. kad dzesēšanas šķidrums ar tādu pašu temperatūru nonāk pie katra radiatora ieejas. Viena cauruļvadu sistēma tiek uzskatīta par daudz sarežģītāku: tur, ūdens kļūst arvien vairāk aukstāks katram nākamajam sildītājam. Un, ja jūs vēlaties aprēķināt radiatoru skaitu viencaurules sistēmai, katru reizi jāpārrēķina temperatūra, un tas ir grūti un laikietilpīgi. Kāda ir izeja? Viena no iespējām ir noteikt radiatoru spēku kā divu cauruļu sistēmai, un pēc tam, proporcionāli siltuma izlaides kritumam, pievienojiet sekcijas, lai palielinātu akumulatora kopējo siltumu.

Monotube sistēmā ūdens katram radiatorim kļūst arvien vairāk aukstāks.

Paskaidrosim ar piemēru. Diagramma parāda viencaurules apkures sistēmu ar sešiem radiatoriem. Bateriju skaits ir noteikts divu cauruļu vadiem. Tagad jums ir jāveic korekcija. Pirmajam sildītājam viss paliek nemainīgs. Otrajā vietā jau ir dzesēšanas šķidrums ar zemāku temperatūru. Mēs nosaka% jaudas kritumu un palielina sekciju skaitu ar atbilstošo vērtību. Attēls ir šāds: 15kW-3kW = 12kW. Atrodiet procentuālo attiecību: temperatūras kritums ir 20%. Tādējādi, lai kompensētu, mēs palielinām radiatoru skaitu: ja jums vajag 8 gab, tas būs par 20% - 9 vai 10 gab. Tas ir tas, kur zināšanas par istabu ir noderīgas: ja tā ir guļamistaba vai bērnudārzs, apaļ tās uz augšu, ja tā ir dzīvojamā istaba vai cita līdzīga telpa, apaļo to līdz mazākajam. Ņem vērā atrašanās vietu pasaules malās: ziemeļu kārta līdz lielai, dienvidos - uz mazāku.

Monotube sistēmās ir nepieciešams pievienot sekcijas radiatoros, kas atrodas tālāk gar filiāli

Šī metode acīmredzami nav ideāla: galu galā izrādās, ka pēdējam akumulatoram filiālē vajadzētu būt vienkārši milzīgu izmēru: pēc sistēmas principa, dzesēšanas šķidrums ar īpašu siltumietilpību, kas vienāda ar tās jaudu, tiek piegādāts līdz tā ievadam, un praktiski nav iespējams pilnībā noņemt 100%. Tāpēc, nosakot katla jaudu monotube sistēmām, parasti ir nepieciešams veikt kādu rezervi, uzstādīt slēgierīces un savienot radiatorus caur apvadi, lai varētu regulēt siltuma pārnesi, tādējādi kompensējot dzesēšanas šķidruma temperatūras kritumu. No visa šī ir viena lieta: ir jāpalielina viencauruļu sistēmas un / vai radiatoru izmēru skaits, un, palielinoties attālumam no filiāles sākuma, tiks uzstādītas vairāk un vairāk sekcijas.

Radiatoru sekciju aptuvenais aprēķins ir vienkāršs un ātrs. Bet skaidrojums, kas atkarīgs no visām telpu īpašībām, lieluma, savienojuma veida un atrašanās vietas, prasa uzmanību un laiku. Bet jūs varat precīzi noteikt sildītāju skaitu, lai ziemā radītu komfortablu atmosfēru.

Apkures radiatoru skaita aprēķināšana uz vienu platību

Izstrādājot jaunu māju vai nomainot veco apkures sistēmu, jums jāzina nepieciešamais bateriju skaits katrai telpai. Mērījumi "acīs" ir neefektīvi. Ir nepieciešams precīzi aprēķināt apsildes radiatoru skaitu vienā platībā, pretējā gadījumā telpā būs vai nu ļoti auksts, ja siltuma avotu nav pietiekami vai, gluži pretēji, tas ir pārāk karsts, kad tas ir bagātīgs, kas novedīs pie nevēlamas regulāras resursu izšķiešanas.

Radiatoru skaita aprēķināšanai uz kvadrātmetru tiek izmantotas dažādas metodes, kuru būtība samazina līdz vienai lietai - noteikt telpas siltuma zudumus citā ielas temperatūrā un aprēķināt nepieciešamo bateriju skaitu, lai kompensētu siltuma zudumus.

Klasiskā tehnika

Līdz šim ir daudz aprēķinu metodes. Sākotnējās shēmas - attiecībā uz platību, griestu augstumu un reģionu - sniedz tikai aptuvenus rezultātus. Precīzāk, ja tiek ņemtas vērā visas telpas īpašības (atrašanās vieta, balkoni, durvju un logu kvalitāte utt.) Un tiek izmantoti īpaši koeficienti, iegūst patiesi optimālu rezultātu, ja telpā vienmēr ir ērti personas temperatūra.

Lielākajā daļā gadījumu celtnieki vai māju īpašnieki pirms remonta izmanto populāro metodi siltuma radiatora aprēķināšanai. Tas attiecas uz telpām ar griestu augstumu aptuveni 2,5 metri. Šis minimālais sanitārā standarts ir spēkā kopš padomju laikiem, tāpēc lielākā daļa daudzdzīvokļu ēku bija orientēti uz šo vērtību.

Ir vērts ņemt vērā, ka pirms alumīnija sildīšanas radiatoru aprēķināšanas platībai vai čugunam šī metode neņem vērā daudzus korekcijas koeficientus, kas saistīti ar telpas individuālajām īpašībām (sienas biezums, stiklojums utt.).

Teritorijas apkure tiek aprēķināta, pamatojoties uz konstantu, kas nosaka, ka 100 m siltuma enerģija ir nepieciešama, lai sildītu 1 m 2 telpā.

Piemērs telpai ar platību 20 kv.m:

20 m 2 x 100 W = 2000 W

Paredzētā siltuma nepieciešamā jauda šādai telpai ir aptuveni 2000 vati.

Katrs akumulators sastāv no vairākām atsevišķām sadaļām, kas samontētas uzstādīšanas laikā vienā modulī. Radiatora izvēle atbilstoši telpas platībai tiek veikta, pamatojoties uz ražotāja norādītajiem izejas parametriem. Šie dati ir norādīti pasē, kas nāk ar radiatoru. Pirms aprēķināt radiatora sekciju skaitu, vēlams uzzināt šos skaitļus. Visa šī informācija ir tehniskajā pasei, to arī varat uzzināt no konsultanta, pērkot vai tiešsaistē ražotāja vietnē.

Piemēram, ja instrukcija parāda vērtību vienai sadaļai 180 W, tad, lai noskaidrotu kopējo sekciju skaitu, jums ir jāsadala kopējā jauda, ​​kas vajadzīga atsevišķas sadaļas izvades vērtībā:

2000 vati 180 W = 11,11 gabali

Vērtībai, kas dos šo radiatoru aprēķinu, jābūt pareizi noapaļotai. Tas vienmēr ir nepieciešams to darīt lielākoties, lai nodrošinātu interjeru ar siltumu. Tas nozīmē, ka iepriekš minētajā piemērā tiks uzstādīti 12 baterijas.

Šī metode ir piemērota daudzdzīvokļu ēkām, kurās dzesēšanas šķidruma temperatūra ir aptuveni 700 ° C. Jūs varat arī izmantot citu vienkāršotu metodi. Saskaņā ar šādu apkures bateriju aprēķinu katrā platībā konstante ir vērtība 1,8 m 2. To vajadzētu sildīt ar vienu parasto vidējo izmēru sekciju.

Par 22 kv. M istabu jūs saņemat aprēķinu:

22 m 2. 1.8 m2 = 12,2 gabali (noapaļoti līdz 13)

Tomēr šo aptuveno apkures radiatoru aprēķināšanu nav atļauts, uzstādot moduļus ar paaugstinātu siltuma pārnesi 150-200 W līmenī no katras sadaļas.

Ir nepieciešams sildīt visu gaisa daudzumu, tāpēc ir daudz racionālāk noteikt vajadzīgo radiatoru skaitu pēc tilpuma.

Korekcijas koeficientu piemērošana

Iepriekš precīzāk aprēķinot baterijas virs platības, būs jāņem vērā atsevišķi elementi, kas saistīti ar ēku, apkures sistēmu, pašām sekcijām utt.

Vairumā gadījumu kļūdu var samazināt, zinot šādu informāciju:

  • siltumnesējam izmantotajam ūdenim ir zemāka siltumvadītspēja nekā apsildāmam tvaikam;
  • attiecībā uz leņķa telpu ir nepieciešams paaugstināt radiatoru skaitu par 15-20% atkarībā no tā izolācijas pakāpes un kvalitātes;
  • telpām ar griestiem virs 3 metriem apkures radiators netiek aprēķināts pēc platības, bet gan pēc telpas kubiskā tilpuma;
  • vairāk logiem būs mazāk silti sākotnējie apstākļi, ir vēlams sadalīt sekcijas telpā, lai uzstādītu katrā logā;
  • dažādi materiālu radiatori dažādi siltuma vadītspējas pakāpe;
  • aukstākai klimata zonai jāveic lielāks korekcijas koeficients;
  • veciem koka rāmjiem sliktāka siltuma vadītspēja nekā jaunākiem logiem;
  • kad dzesēšanas šķidrums pārvietojas no augšas uz leju, jaudas palielinājums ir ievērojams līdz pat 20%
  • Izmantotā ventilācija nozīmē palielinātu jaudu.

Kāpēc akumulatori vienmēr tiek novietoti zem loga

Jebkurš radiators, neatkarīgi no tā veida, konstrukcijas un materiāla, pamatojas uz siltā gaisa konvekciju. Sildot, gaiss paaugstinās, tā vietā tiek uzliesmots "auksts", kas arī uzsilst, jauna aukstā gaisa daļa atkal paceļas. Šāda nepārtraukta cirkulācija nodrošina vienmērīgu visu istabas telpas platību, ja tiek pareizi aprēķināts siltuma avotu skaits.

Logā jebkurā telpā ir auksts tilts, kas, pateicoties konstrukcijai un lielai siltuma radīšanai, ļauj vairāk aukstā gaisa iet cauri sienām un pat durvīm. Siltuma avotam, kas tiek uzstādīts zem loga, izdodas sildīt auksto gaisu, kas nāk no loga, un tas iekļūst telpā jau silts. Ja sildīšanas elementi nav novietoti zem loga un jebkurā citā telpā, ap istabu cirkulēs auksta plūsma, kas nāk no loga. Un pat visspēcīgākais radiators nepietiek, lai klusu neitralizētu aukstumu.

VIDEO: ar kuru var rasties kļūdas aprēķinos

Aprēķins balstīts uz telpas apjomu

Piedāvātais apkures radiatora aprēķins apjoma ziņā pēc būtības ir līdzīgs radiatora sekciju aprēķinam virs grīdas platības. Tomēr šeit bāzes vērtība nav apgabals, bet telpas kubiskais tilpums. Vispirms ir jāiegūst telpas tilpuma vērtība. Vietējās SNIP normas ir paredzētas apkurei 1 m 3 no telpas 41 W siltuma. Lai atrastu skaļumu, jums jāreizina telpas augstums, garums un platums.

Piemēram, ņemiet platību 22 kv.m. ar griestu augstumu 3 m. Iegūstiet vajadzīgo apjomu:

Sākums »Apkure» Kā aprēķināt radiatora sekciju skaitu

Kā aprēķināt radiatora sekciju skaitu

Modernizējot apkures sistēmu, papildus nomainot caurules, tās arī maina radiatorus. Un šodien tie ir no dažādiem materiāliem, dažādu formu un izmēru. Tikpat svarīgi ir arī dažādi siltuma pārnese: siltuma daudzums, kas var pāriet gaisā. Un tas noteikti tiek ņemts vērā, veicot radiatoru sekciju aprēķinu.

Numurs būs silts, ja tiks kompensēta siltuma daudzums, kas iet prom. Tāpēc aprēķinos tiek ņemti vērā telpu siltuma zudumi (tie ir atkarīgi no klimatiskās zonas, no sienas materiāla, izolācijas, logu laukuma utt.). Otrais parametrs ir vienas sadaļas siltuma jauda. Tas ir siltuma daudzums, ko tas var ražot, pie maksimālajiem sistēmas parametriem (90 ° C pie ieplūdes un 70 ° C kontaktligzdā). Šis raksturlielums jānorāda pasē, bieži uz iepakojuma.

Radiatoru sekciju skaitu aprēķina ar savām rokām, ņemot vērā telpu un apkures sistēmas īpašības

Viens svarīgs jautājums: veicot aprēķinus pats, ņemiet vērā, ka lielākā daļa ražotāju nosaka maksimālo skaitu, ko viņi saņēma ideālos apstākļos. Tā kā jebkura noapaļošana rada lielu ceļu. Zemas temperatūras apsildīšanas gadījumā (siltumnesēja temperatūra pie ieejas ir zemāka par 85 ° C) tiek meklēta vai pārrēķināta siltuma jauda attiecīgajiem parametriem (aprakstīts turpmāk).

Platības aprēķins

Šī ir visvienkāršākā metode, kas ļauj aptuveni aprēķināt telpu apsildīšanai nepieciešamo sekciju skaitu. Pamatojoties uz daudziem aprēķiniem, tiek iegūtas vidējās siltumietilpības normas uz kvadrātmetru. Lai ņemtu vērā reģiona klimatiskos apstākļus, SNiP paredzētas divas normas:

  • Krievijas centrālajiem reģioniem ir nepieciešams no 60 W līdz 100 W;
  • platībām virs 60 °, sildīšanas ātrums uz kvadrātmetru ir 150-200 vati.

Kādēļ normās, kas piešķirtas tik lielam diapazonam? Lai varētu ņemt vērā sienu materiālus un izolācijas pakāpi. Betona mājas iegūst ķieģeļu maksimālās vērtības, varat izmantot vidējo. Siltām mājām - minimums. Vēl viena svarīga detaļa: šie standarti tiek aprēķināti vidējam griestu augstumam - ne vairāk kā 2,7 metri.

Kā aprēķināt radiatora sekciju skaitu: formula

Zinot telpas platību, reiziniet siltuma izmaksas, kas ir vispiemērotākās jūsu apstākļiem. Jūs saņemat vispārējos siltuma zudumus telpā. Izvēlētajā radiatora modeļa tehniskajos datos atrodiet vienas sadaļas siltuma jaudu. Jūs sadalāt kopējos siltuma zudumus ar jaudu, jūs saņemat to skaitu. Tas ir viegli, bet, lai padarītu to skaidrāku, mēs sniedzam piemēru.

Piemērs radiatoru sekciju skaita aprēķinam uz grīdas laukuma

Stūra istaba 16 m 2. vidējā joslā, ķieģeļu mājā. Ievietojiet akumulatoru ar 140 vatu siltuma jaudu.

Ķieģeļu namā mēs saskaramies ar siltuma zudumiem diapazona vidū. Tā kā istaba ir leņķiska, labāk ir ņemt lielāku vērtību. Ļaujiet tai būt 95 vatus. Tad izrādās, ka telpas apkurei nepieciešams 16 m 2 * 95 W = 1520 W.

Tagad skatiet numuru: 1520 W / 140 W = 10,86 gab. Kārta, izrādās, 11 gab. Tik daudziem radiatoru posmiem būs jāinstalē.

Teritorijas radiatoru aprēķins ir vienkāršs, bet tālu no perfekta: griestu augstums tiek pilnībā ignorēts. Ar nestandarta augstumu tiek izmantota vēl viena metode: pēc tilpuma.

Mēs skaita baterijas pēc tilpuma

SNiP ir normas un telpu kubikmetru apkure. Tie tiek doti dažādu veidu ēkām:

  • ķieģeļu uz 1 m 3, nepieciešams 34 W siltuma;
  • paneļa gadījumā - 41 W

Šis radiatora sekciju aprēķins ir līdzīgs iepriekšējam, tikai tagad tas nav nepieciešams apgabals, bet apjomu un standartus ņem citi. Sējums tiek reizināts ar normu, un iegūtais skaitlis dalās ar radiatora vienas daļas (alumīnija, bimetāla vai čuguna) jaudu.

Formula sadalījumu skaita aprēķināšanai pēc tilpuma

Aprēķina pēc tilpuma piemērs

Piemēram, mēs aprēķinām, cik daudz sadaļu ir nepieciešams telpā ar platību 16 m 2 un griestu augstumu 3 metri. Ēka ir izgatavota no ķieģeļiem. Radiatori izmanto tādu pašu jaudu: 140 W:

  • Atrodiet skaļumu. 16 m 2 * 3 m = 48 m 3
  • Mēs uzskatām nepieciešamo siltuma daudzumu (ķieģeļu ēku norma ir 34 W). 48 m 3 * 34 W = 1632 W.
  • Noteikt, cik daudz sadaļu ir vajadzīgs. 1632 W / 140 W = 11,66 gab. Kārta, mēs iegūstam 12 gabalus.

Tagad jūs zināt divus veidus, kā aprēķināt radiatoru skaitu katrā telpā.

Siltuma transmisija uz sekciju

Šodien radiatoru klāsts ir liels. Ja ārējās vairākuma līdzības dēļ siltuma veiktspēja var ievērojami atšķirties. Tie ir atkarīgi no materiāla, no kura tie ir izgatavoti, pēc izmēra, sienas biezuma, iekšējās šķērsgriezuma un par to, cik labi struktūra tiek pārdomāta.

Tāpēc ir iespējams precīzi pateikt, cik daudz kW ir 1 alumīnija (čuguna bimetāla) radiatora daļa tikai katram modelim. Šie dati norāda ražotāju. Galu galā ir būtiskas izmēru atšķirības: daži no tiem ir garš un šaurs, citi ir zemi un dziļi. Tā paša ražotāja viena augstuma jaudas sadaļa, bet dažādi modeļi var atšķirties no 15 līdz 25 W (skatīt tabulu STYLE 500 un STYLE PLUS 500). Vēl vairāk taustāmas atšķirības var būt no dažādiem ražotājiem.

Dažu bimetāla radiatoru tehniskie parametri. Lūdzu, ņemiet vērā, ka šo sadaļu siltuma jaudai var būt ievērojama atšķirība.

Tomēr, lai sākotnēji novērtētu, cik daudz akumulatoru sekcijas ir vajadzīgas telpu apkurei, vidējā temperatūrā katras radiatora tipa siltuma jaudas vērtības tika iegūtas. Tos var izmantot aptuvenu aprēķinu veikšanai (dati sniegti par baterijām ar 50 cm attālumu centrā):

  • Bimetāla - viena sadaļa piešķir 185 W (0,188 kW).
  • Alumīnijs - 190 W (0,19 kW).
  • Čuguns - 120 W (0,120 kW).

Precīzāk, cik daudz kilometru vienā bimetāla, alumīnija vai čuguna radiatora daļā jūs varat darīt, izvēloties modeli un lemjot par izmēriem. Ļoti liela var būt čuguna bateriju atšķirība. Tās ir ar plānām vai biezām sienām, kuru dēļ to siltuma jauda ievērojami mainās. Iepriekš ir vidējās baterijas parastajā formā (akordeons) un tuvu tam. Radiatoriem "retro" stilā vairākas reizes ir mazāka siltuma jauda.

Tie ir Turcijas firmas Demir Dokum čuguna radiatoru tehniskie raksturlielumi. Atšķirība ir vairāk nekā cieta. Viņa var būt vēl vairāk

Balstoties uz šīm SNiP vērtībām un vidējām normām, tika iegūts vidējais radiatora sekciju skaits uz 1 m 2:

  • bimetāla daļa sildīs 1,8 m 2;
  • alumīnijs - 1,9-2,0 m 2;
  • čuguns - 1,4-1,5 m 2;

Kā aprēķināt radiatora sekciju skaitu no šiem datiem? Vēl vieglāk. Ja jūs zināt telpas platību, daliet to ar faktoru. Piemēram, telpas, kuru platība ir 16 m 2, tās apkurei būs nepieciešama apmēram:

  • bimetāla 16 m 2 / 1,8 m 2 = 8,88 gab., noapaļošana - 9 gab.
  • alumīnijs 16 m 2/2 m 2 = 8 gab.
  • čuguna 16 m 2 / 1,4 m 2 = 11,4 gabali, noapaļoti - 12 gabali.

Šie aprēķini ir tikai aptuvenie. Par tiem jūs varēsiet aptuveni novērtēt sildīšanas ierīču iegādes izmaksas. Precīzi aprēķiniet radiatoru skaitu katrā telpā, varat izvēlēties modeli un pēc tam pārrēķināt skaitli atkarībā no tā, kāda ir dzesēšanas šķidruma temperatūra jūsu sistēmā.

Radiatoru sekciju aprēķins atkarībā no faktiskajiem apstākļiem

Vēlreiz pievēršam uzmanību faktam, ka vienas akumulatora daļas siltuma jauda ir norādīta ideāliem apstākļiem. Akumulators ģenerē tik daudz siltuma, ja tās dzesēšanas šķidrums pie ieplūdes atveras + 90 ° C, pie izplūdes atveres + 70 ° C un + 20 ° C tiek uzturēts telpās. Tas nozīmē, ka sistēmas temperatūras galva (saukta arī par "delta sistēmu") būs 70 ° C. Ko darīt, ja pie ieejas jūsu sistēma ir augstāka par + 70 ° C? vai ir nepieciešama istabas temperatūra + 23 ° C? Pārrēķināt deklarēto jaudu.

Lai to izdarītu, ir nepieciešams aprēķināt apkures sistēmas temperatūras galvu. Piemēram, pie piegādes jums ir + 70 ° C, pie izejas 60 ° C, un telpā jums ir nepieciešama temperatūra + 23 ° C. Mēs atrodam jūsu sistēmas deltu: vidējais ieplūdes un izplūdes temperatūras aritmētiskais vidējais mīnus istabas temperatūra.

Formula apkures sistēmas temperatūras aprēķināšanai

Mūsu gadījumā izrādās: (70 ° C + 60 ° C) / 2 - 23 ° C = 42 ° C. Delta šādiem apstākļiem 42 ° C Tālāk mēs atrodam šo vērtību reklāmguvumu tabulā (atrodas zemāk) un reizina deklarēto jaudu ar šo koeficientu. Mēs iemācīsim spēku, ko šī sadaļa varēs izdalīt jūsu apstākļiem.

Faktoru tabula apkures sistēmām ar dažādu temperatūru

Mēs atrodam slejās tonēti zilā krāsā, līnija ar delta 42 ° C. Tas atbilst koeficientam 0,51. Tagad mēs aprēķinām siltuma jaudu vienai radiatora sekcijai mūsu lietā. Piemēram, deklarētā jauda 185 W, piemērojot atrasto koeficientu, iegūstam: 185 W * 0.51 = 94.35 W. Gandrīz puse. Kad radiatora sekcijas tiek aprēķinātas, šī jauda jāaizstāj. Tikai ņemot vērā individuālos parametrus telpā, būs silts.

Top